< (왼쪽부터) 신소재공학과 김현준 박사과정, 강지형 교수, 이원범 박사과정 >
우리 대학 신소재공학과 강지형 교수 연구팀이 고분자 속 전도성 액체금속 입자 네트워크 제조법을 개발하고, 이를 이용해 고무 특성을 갖는 신축성 인쇄 전자회로 기판을 구현했다고 14일 밝혔다.
최근 체내 삽입형 전자소자, 웨어러블 전자소자, 소프트 로보틱스 등에 관한 관심이 증가하면서 우수한 신축성 및 전기적 성질을 갖는 신축성 전자기기에 관한 다양한 연구가 진행됐다. 이러한 신축성 전자기기의 실현을 위해서는 고집적 전자기기 제작의 바탕이 되는 신축성 인쇄 회로 기판이 요구된다.
신축성 인쇄 회로 기판의 실현을 위해 기존에 형태가 변하지 않는 인쇄 회로 기판에 사용되는 구리와 같은 금속을 신축성 고분자 기판 위에 구불구불한 형태로 패터닝을 해 신축성 인쇄 회로 기판을 구현한 연구가 제시됐으나, 이렇게 구조 공학을 통해 만들어진 신축성 인쇄 회로 기판은 신축성이 제한적이고 전자 부품의 밀도가 줄어든다는 한계가 있다. 이러한 한계를 뛰어넘기 위해 자체적으로 늘어날 수 있고 전기전도성을 갖는 전도성 고분자, 금속 나노 물질–고분자 복합체 등이 제시됐으나 이들은 신축 과정에서 급격한 저항 변화를 보여 신축성 인쇄 회로 기판으로 사용되기 어렵다는 한계를 갖고 있다.
< 그림 1. 초음파에 의해 형성되는 나노 크기의 액체금속 입자에 의한 액체금속 입자 네트워크의 형성 >
이러한 한계를 뛰어넘을 재료로 액체금속이 큰 관심을 받게 됐다. 액체금속은 상온에서 액체의 형태를 띠는 금속으로, 높은 전기전도성과 액체와 같은 자유로운 변형성으로 인해 신축성 전자소자에 사용하기에 적합한 재료로 평가를 받는다. 하지만 액체 상태가 갖는 외부 충격에 대한 불안정성으로 인해 실제 인쇄 회로 기판의 배선으로 사용하는 것에 한계가 있었다.
이를 극복하기 위해 많은 연구진이 액체금속을 마이크로 크기의 입자로 분쇄한 후 고분자와 섞어 우수한 기계적 성질을 부여하고자 했다. 하지만 이렇게 만들어진 액체금속 입자–고분자 복합체는 액체금속 입자 간의 반발력으로 인해 입자 간의 연결이 형성되지 않아 전기가 통하지 않는다는 문제점이 있다.
이러한 문제를 해결하기 위해 강지형 교수 연구팀은 초음파를 이용해 고분자 지지체 내에서 액체금속 입자들을 조립시켜 전도성 네트워크를 형성했고 신축과정에서 저항이 변하지 않는 전극을 개발했다. 이를 이용해 세계 최초로 구조 공학 없이 고무처럼 자유자재로 변형이 가능한(5배 이상 늘어나는) 신축성 인쇄 회로 기판에 응용될 수 있음을 보였다.
연구팀은 절연성 복합체에 초음파를 가하면 액체금속 입자/고분자/액체금속 입자 계면에 나노 크기의 액체금속 입자가 집중적으로 형성되고 전도성 입자 조립 네트워크가 만들어지는 것을 확인했다.
< 그림 2. 액체금속 입자 네트워크 기반 신축성 디스플레이 및 신축성 광 혈류 측정센서 >
만들어진 네트워크는 기존 인쇄 회로 기판의 배선에 사용되는 구리와 비슷한 수준의 낮은 전기 저항을 갖고, 10배까지 늘렸을 때도 저항이 거의 변하지 않는다. 이와 더불어 복합체의 우수한 기계적 성질로 인해 외부의 물리적 충격에 대한 높은 저항성을 가진다.
특히, 이번 연구는 이전의 기계적 손상을 가해 전도성을 부여하는 방식과 달리 초음파에 기반한 비 파괴적 방식을 이용해 액체금속이 새어 나오는 문제를 해결했고, 이를 통해 다양한 전자 부품과의 높은 접합력을 얻을 수 있었다.
< 그림 3. 다양한 고분자 매트릭스를 이용한 고해상도 광 패터닝 및 손상을 입은 액체금속 입자 네트워크의 자가 치유 >
이러한 액체금속 입자 네트워크의 우수한 전기적/기계적 성질, 그리고 높은 접합력에 기반해 연구팀은 신축성 고분자 기판 위에 액체금속 입자 네트워크를 패터닝한 후, 전자 부품과 연결해 신축성 디스플레이 및 광 혈류 측정 센서를 제작함으로써 다양한 신축성 웨어러블 전자소자로의 응용 가능성을 제시했다.
연구팀은 나아가 포토레지스트, 하이드로겔, 자가 치유 고분자 등 다양한 고분자 속에서 동일한 방식으로 액체금속 입자 네트워크를 만듦으로써, 기존의 신축성 전극 연구들이 보여주지 못한 고해상도 광 패터닝, 체내 삽입형 전자소자에 활용되기 위한 낮은 임피던스를 갖는 전극, 자가 치유가 가능한 액체금속 기반 전극 등으로의 다양한 응용 가능성을 확인했다.
신소재공학과 이원범, 김현준 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 (Science)' 11월 11일 字 표지 논문으로 게재됐다. (논문명 : Universal Assembly of Liquid Metal Particles in Polymers Enables Elastic Printed Circuit Board).
< 그림 4. 사이언스(Science) 지 표지 이미지 >
강지형 교수는 "이번 연구를 통해 개발된 액체금속 입자 조립 네트워크 기반의 복합 전극은 웨어러블 및 생체 삽입형 전자장치 발전과 상용화에 크게 기여할 것ˮ이라고 말했다.
한편 이번 연구는 한국연구재단의 나노소재기술개발사업 미래기술연구실, 우수신진연구사업, ERC 웨어러블 플랫폼 소재기술 센터의 지원을 받아 수행됐다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 인간 피부의 압력 감지 능력을 뛰어넘는 고감도 및 광범위 압력 측정이 가능한 로봇용 전자 피부를 개발했다고 27일 밝혔다. 연구팀이 개발한 전자 피부는 인간 피부에 비해 더 높은 민감도와 더 넓은 압력 측정 범위를 보여 최근 각광받는 로봇 산업, 헬스케어 산업, 증강 현실 등 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다. 전기및전자공학부 이시목 박사과정과 변상혁 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 버전에 10월 3일 字 출판됐다. (논문명 : Beyond the Human Touch Perception: Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation) 인간 피부의 촉각 인지 능력을 모방하는 전자 피부는 원격으
2022-10-27우리 대학 신소재공학과 스티브 박 교수, 기계공학과 김택수 교수 공동 연구팀이 기하학적으로 설계된(대관람차 모양) 단단한 아일랜드 어레이 기반 신축성 기판을 개발했다고 7일 밝혔다. 아일랜드란 부드러운 폴리머 내부에 존재하는 상용 칩 (LED, 배터리 등)들을 보호하기 위한 단단한 소재의 평평하고 얇은 판을 말한다. 아일랜드 구조의 효과적인 응력 분산을 통해 칩들 주변의 폴리머가 대신 늘어나면서 신축성을 가지는 전자장치를 구현할 수 있다. 박 교수 연구팀은 신축성 있는 전자장치의 아일랜드 디자인을 기하학적으로 설계해 아일랜드와 그 주변 폴리머 기판과의 기계적 결합을 강하게 해주도록 설계했다. 대관람차 모양으로 디자인된 단단한 아일랜드는 기존의 원이나 사각형 모양의 아일랜드와 달리 다양한 방향의 변형에도 견딜 수 있으며 화학적 결합 없이도 모든 폴리머 재료에 응용 및 적용될 수 있을 것으로 기대된다. 단단한 아일랜드와 주변 폴리머 기판이 늘어날 때, 그 둘이 상호작용하는
2022-07-07우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 안정적인 형태의 액체금속을 고해상도로 프린팅할 수 있는 기술을 개발했다고 25일 밝혔다. 액체금속은 높은 전기전도성과 액체와 같은 변형성으로 인해 유연 및 신축성 전자소자에 다양하게 적용돼왔다. 하지만 액체 상태가 갖는 불안정성과 높은 표면장력으로 인해 직접적인 접촉을 요구하는 전극이나 고해상도를 요구하는 전자소자의 배선으로 사용하는 것에는 한계가 있었다. 이를 극복하기 위해 액체금속을 6~10㎛ (마이크로미터) 크기의 입자 형태로 분쇄해 안정적인 형태로 만들어 전자소자에 적용하는 연구가 진행돼왔지만, 이 경우에는 표면에 일어난 산화로 인해 기존의 높은 전기전도성을 상실한다는 단점이 존재했다. 이러한 액체금속 입자를 전기소자에 사용되기 위해서는 기계적, 화학적 변성을 통해 표면에 존재하는 산화막을 제거해 전기전도성을 다시 확보하는 과정이 필요했다. 이 문제를 해결하기 위해 연구팀은 프린팅 과정에서
2022-05-26우리 대학 기계공학과 박인규 교수 연구팀이 차세대 전자장치인 사용자 맞춤형 3D 형상의 웨어러블 신축성 전자장치 설계 및 제조기술 관련 원천기술을 개발했다. 웨어러블 전자장치는 미래를 바꿀 10대 기술로, 안경형 웨어러블 전자장치 (구글 글래스)에서 손목 착용형 웨어러블 전자장치 (스마트 워치)에 이르기까지 세상의 주목을 받아왔다. 최근에는 이런 웨어러블 전자장치를 착용하는 사람의 신체 부위 형태에 딱 들어맞는 디자인으로 바뀌고 있으며, 이에 따라서 착용감이 높으며, 다양한 생체 신호를 정확하게 측정하고, 정보전달을 신속하게 할 수 있는 전자장치 개발에 힘쓰고 있다. 하지만, 기존의 연구들은 대부분 2D 필름 형태의 신축성이 있는 웨어러블 전자장치이므로, 복잡한 형상을 가진 3D 형상의 표면에 부착할 수 없다는 단점이 있다. 박인규 교수 연구진은 이러한 문제를 해결을 위해, 열 성형 기술 및 사전왜곡 패터닝 기술을 개발하였다. 제작 방법은 다음과 같다. 열 성형이 가능
2021-11-01〈 스티브박 교수, 류정재 박사과정, 홍승범 교수 〉 우리 대학 신소재공학과 홍승범 교수, 스티브 박 교수 연구팀이 공동으로 에너지 수확은 물론 인장 변형률도 감지할 수 있는 섬유를 개발했다. 류정재 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 에너지(Nano Energy)에 게재됐다. 웨어러블 기기에 대한 관심이 커짐에 따라 인간의 움직임과 신체 신호를 포착할 수 있는 센서 및 인간의 기계적 움직임으로부터 에너지를 수확할 수 있는 기기에 대한 수요가 많아지고 있다. 웨어러블 기기는 기계적 피로에 대한 우수성, 높은 유연성 그리고 피부 호흡을 방해하지 않아야 하며 섬유는 이러한 특성을 구현하기에 유리한 구조를 지니고 있다. 이번에 개발된 섬유는 탄소나노튜브와 전도성 고분자층의 크랙 형성을 통해 기존의 섬유 형태의 인장 센서보다 높은 민감도를 구현함은 물론 뛰어난 안정성으로 반복된 인장에도 강한 특성을 나타냈다.
2019-01-24