우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다.
공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers)
효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다.
특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다.
효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다.
중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다.
작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다.
공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다.
DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다.
연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다.
김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다.
이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
우리 대학이 ㈜엠비트로(대표이사 이영우)로부터 KAIST의 첫 미국 캠퍼스로 추진 중인 KAIST-NYU 조인트캠퍼스의 공동연구 발전기금 10억 원을 유치했다. 이번 발전기금은 뉴욕대학교(이하, NYU)와 진행하고 있는 여러 공동연구 중 '스마트홈 헬스케어(Healthcare at Home)'분야의 다양한 솔루션 연구 및 개발에 사용할 계획이다. 이영우 ㈜엠비트로 대표이사는 "KAIST-NYU 조인트캠퍼스가 우리나라 기업의 미국 진출을 돕는 생태계로 조성되기를 바라는 마음으로 기부를 결정했다"라고 밝혔다. 우리 대학은 2021년 뉴욕 진출 계획을 밝힌 이후, 지난해 NYU 및 뉴욕시 등과 파트너십을 맺어왔다. 현재 두 학교는 조인트캠퍼스 협정 하에 인공지능(AI), 바이오 분야 등 총 9개 분야의 중장기 공동연구를 기획하고 있으며, 교환학생·부전공·복수전공·공동학위 등을 포함한 교육 분야 협력을 추진하고 있다. ㈜엠비트로의 발전
2023-05-29우리 대학이 양자대학원(KAIST Graduate School of Quantum Science and Technology)을 설립해 올 가을학기부터 학사 운영을 시작한다. 양자기술은 항공·우주·국방·에너지·의료 등 폭넓은 분야에 활용할 수 있는 기초기술로 현재 8조 원가량인 전 세계 시장 규모는 2030년 101조 원 규모로 성장할 것으로 전망되고 있다. 하지만, 기술 선점 및 가치 창출을 위한 국내 전문 과학기술 인력은 절대적으로 부족한 상태로 양자 분야 주도권을 확보를 위한 인력양성이 시급하다. 우리 대학은 세계 최고 수준의 양자기술을 선도하고 차세대 원천기술 및 국가 경쟁력 확보를 목표로 지난 2월 양자대학원을 설립했다. 양자 컴퓨팅, 양자 통신, 양자 센싱을 비롯한 양자기술 분야 전반에 걸친 석·박사급 인재를 양성한다. 특히, 정부출연연구소와 상호협력해 출연연의 현장 연구 경험을 대학의 교육 및 공동연구에
2023-03-24우리 대학 기계공학과 박인규 교수, 윤국진 교수와 물리학과 조용훈 교수 공동 연구팀이 `초저전력, 상온 동작이 가능한 광원 일체형 마이크로 LED 가스 센서 기반의 전자 코 시스템'을 개발하는 데 성공했다고 14일 밝혔다. 공동 연구팀은 마이크로 크기의 초소형 LED가 집적된 광원 일체형 가스 센서를 제작한 이후 합성곱 신경망 (CNN) 알고리즘을 적용해 5가지의 미지의 가스를 실시간으로 가스 종류 판별 정확도 99.3%, 농도 값 예측 오차 13.8%의 높은 정확도로 선택적 판별하는 기술을 개발했다. 특히 마이크로 LED를 활용한 광활성 방식의 가스 감지 기술은 기존의 마이크로 히터 방식 대비 소모 전력을 100분의 1 수준으로 획기적으로 절감한 것이 특징이다. 이번 연구에서 개발된 초저전력 전자 코 기술은 어떠한 장소에서든지 배터리 구동 기반으로 장시간 동작할 수 있는 모바일 가스 센서로 활용될 것으로 기대된다. 타깃 가스의 유무에 따라 금속산화물 가스 감지 소재의
2023-02-14딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다. 연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙
2023-02-06우리 대학 기계공학과 이정철 교수 연구팀이 현미경 사진을 이용해 나노 스케일 3D 표면을 예측하는 딥러닝 기반 방법론을 제시했다고 17일 밝혔다. 물리적 접촉 기반으로 나노 스케일의 표면 형상을 3D 측정하는 원자현미경은 웨이퍼 소자 검사 등 반도체 산업에서 사용되고 있다. 하지만, 원자현미경은 물리적으로 표면을 스캔하기 때문에 측정 속도*가 느리고, 고온 극한 환경에서는 작동할 수 없다는 단점을 지닌다. * 측정 속도를 높이기 위해 표면 스캔 방식의 효율을 개선해 20 FPS(초당 프레임 수) 수준의 비디오 프레임 원자현미경이 개발됐지만, 측정 가능한 표면의 면적이 100제곱마이크로미터(μm2) 수준으로 제한되며, 극한의 환경에서는 여전히 작동이 제한된다. 이에 연구팀은 비접촉 측정 방법인 광 현미경에서 딥러닝을 이용하여 원자현미경으로 얻어질 수 있는 나노 스케일 3D 표면을 예측했다. 비슷한 개념인 사진에서 깊이를 예측하는 기술은 자율주행을 위해 많이 연구되고
2023-01-17