
< 이재우 교수, 안윤호 연구원 >
우리 대학 생명화학공학과 이재우 교수 연구팀이 고온, 저압 조건에서도 수소를 안정적으로 하이드레이트에 저장할 수 있는 기술을 개발했다.
연구팀의 기술은 천연가스를 열역학적 촉진제로 사용하는 방식으로 수소-천연가스 하이드레이트는 에너지 가스 저장에 크게 기여할 수 있을 것으로 기대된다.
안윤호 박사가 1 저자로 참여하고 생명화학공학과 이 흔 교수, 고동연 교수, GIST 지구환경공학부 박영준 교수팀과 공동으로 연구한 이번 연구 결과는 국제 학술지 ‘에너지 스토리지 머티리얼즈(Energy Storage Materials)’ 6월 6일 자 온라인판에 게재됐다. (논문명 : One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending)
유럽 등에서는 대기 중 이산화탄소의 농도를 줄이기 위해 천연가스에 수소를 일부 혼합해 사용하는 대체 연료 시스템을 개발하고 있다. 불타는 얼음이라고 알려진 가스 하이드레이트는 물로 이루어진 친환경적인 물질임과 동시에 폭발 위험이 없어 현재의 탄소 경제 시대와 도래할 수소 경제 시대의 전환점에서 중요한 에너지 가스 저장 매체로 활용될 수 있다.
수소를 하이드레이트에 저장하기 위해 기존에 사용되던 테트라하이드로퓨란과 같은 유기 화합물 기반 열역학적 안정제는 휘발성이 강해 하이드레이트 해리 후에 가스상에 남아 있어 별도의 분리 공정이 필요하고, 수소가 저장될 수 있는 하이드레이트 동공을 차지해 하이드레이트 내의 에너지 저장 밀도를 낮추는 문제가 있다.
이를 해결하기 위해 하이드레이트를 튜닝해 하이드레이트의 동공 중 일부를 비우고 하나의 동공에 여러 개의 수소분자를 저장하려는 노력 등이 있었지만 여전히 유기 화합물 기반의 열역학적 안정제가 필요하다는 문제가 있었다.
연구팀은 천연가스의 주성분인 메탄과 에탄의 하이드레이트 상의 평형 조건이 수소에 비해 낮은 점에 주목해 메탄과 에탄을 열역학적 촉진제로 사용했다. 그 결과 수소-천연가스 혼합물을 하이드레이트에 안정적으로 저장하는 데 성공했다.
메탄과 에탄의 구성 비율에 따라 구조 I 또는 구조 II 하이드레이트가 형성될 수 있는데 두 구조 모두 저압 조건에서도 수소-천연가스가 안정적으로 저장됨을 확인했다.
연구팀은 얼음으로부터 직접 하이드레이트를 만드는 방법과 객체 치환법(용어설명)을 이용해 수소-천연가스 하이드레이트를 제작했고, 수소가 처음부터 하이드레이트 형성에 참여할 때만 두 구조의 하이드레이트에서 모두 튜닝 현상이 일어나는 것을 관찰하는 데 성공했다.
연구팀은 튜닝된 구조 I 하이드레이트에서는 작은 동공에만 2개의 수소가 저장되는 반면 튜닝된 구조 II 하이드레이트에서는 작은 동공뿐 아니라 큰 동공에서도 최대 3개의 수소분자가 저장될 수 있음을 확인했다.
하이드레이트는 부피의 약 170배에 달하는 가스를 저장할 수 있는 특성을 가지며, 연구에서 사용한 열역학적 촉진제인 천연가스는 그 자체로 에너지원으로 활용될 수 있어 다양한 분야에 활용할 수 있을 것으로 기대된다.
1 저자인 안윤호 박사는 “기존의 열역학적 촉진제들과는 달리 하이드레이트에 저장된 모든 물질을 에너지원으로 사용할 수 있다는 의의가 있다”라고 말했다.
이재우 교수는 “수소-천연가스 혼합 연료는 기존의 천연가스 운송 인프라를 그대로 활용해 보급 및 이용될 수 있다는 점에서 연구팀의 수소-천연가스 하이드레이트 시스템은 상용화 가능성이 크다”라며 “에너지 가스가 열역학적 안정제로 사용될 가능성을 처음 확인한 만큼, 하이드레이트 내의 가스 저장량을 늘리기 위해 추가적인 연구를 진행 중이다”라고 말했다.
이번 연구는 연구재단의 중견 연구자 지원사업과 BK21 plus 프로그램을 통해 수행됐다.
□ 그림 설명
그림1. 객체 치환법을 이용하여 천연가스 하이드레이트에 수소를 저장하는 방법과 얼음으로부터 직접 수소-천연가스 하이드레이트를 저장하는 방법
우리 대학 생명화학공학과 최민기 교수가 과학기술정보통신부와 한국연구재단이 공동 주관하는 ‘이달의 과학기술인상’을 수상한다. 이번 시상은 ‘평화와 발전을 위한 세계과학의 날(11월 10일)’을 기념해 진행된다. 이달의 과학기술인상은 최근 3년간 독창적인 연구 성과를 창출해 과학기술 발전에 공헌한 연구개발자를 매달 1명씩 선정해 과기정통부 장관상과 상금 1,000만원을 수여하는 상이다. 최민기 교수는 친환경 암모니아 합성을 위한 고성능 촉매를 개발해 탄소중립과 수소 경제 전환을 위한 핵심 기술을 마련한 공로를 인정받았다. 암모니아는 비료와 의약품 등 필수 산업 원료일 뿐 아니라 액화가 쉽고 수소 저장 밀도가 높아 재생에너지 기반 수소를 저장·운송할 수 있는 차세대 에너지 매개체로 주목받고 있다. 그러나 현재 상용화된 ‘하버-보슈 공정’은 500℃ 이상, 100기압 이상의 고온·고압이 필요해
2025-11-05이산화탄소를 배출하지 않는 그린수소(Green Hydrogen) 생산의 핵심 기술인 고체산화물 전해전지((Solid Oxide Electrolysis Cell, SOEC)는 세라믹 분말을 고온에서 굳히는 ‘소결’ 과정이 필요하다. 우리 대학 연구진은 이 과정을 6시간에서 10분으로 단축하고 온도도 1,400℃에서 1,200℃로 낮추는 데 성공했다. 이번 기술은 전지 제조의 에너지와 시간을 크게 줄여, 친환경 수소 시대를 앞당길 혁신으로 평가받고 있다. 우리 대학은 기계공학과 이강택 교수 연구팀이 단 10분 만에 그린수소의 고성능 전해전지를 완성할 수 있는 초고속 제조 기술을 개발했다고 25일 밝혔다. 이번 기술의 핵심인 ‘소결’ 은 전지를 이루는 세라믹 가루를 고온에서 구워 단단히 결합시키는 과정이다. 이 과정이 제대로 이루어져야 전지가 가스를 새지 않고(수소와 산소가 섞이면 폭발 위험), 산소 이온이 손실 없이 이동하며, 전극과 전
2025-10-28요즘 수소 같은 청정에너지를 더 효율적이고 저렴하게 만들기 위해, 적은 전력으로 성능이 뛰어난 촉매 재료를 빠르게 합성하는 기술이 중요한 연구 주제로 떠오르고 있다. 우리 대학 연구진은 빛을 단 0.02초 비추어 3,000 ℃의 초고온을 구현하고 수소 생산 촉매를 효율적으로 제작할 수 있는 플랫폼 기술을 개발했다. 이 덕분에 에너지는 1/1,000만 쓰고도, 수소 생산 효율은 최대 6배 높아졌다. 이번 성과는 미래 청정에너지 기술의 상용화를 앞당길 핵심 돌파구로 평가된다. 우리 대학은 10월 20일, 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 강력한 빛을 짧게 쬐어주는 것만으로 고성능 나노 신소재를 합성하는 ‘직접접촉 광열처리(Direct-contact photothermal annealing)’ 합성 플랫폼을 개발했다고 밝혔다. 연구팀은 빛을 아주 짧게(0.02초) 비추는 것만으로 순간적으로 3,000 ℃의 초고온을 만들어내
2025-10-20수소전기차의 핵심인 연료전지 작동 중 촉매의 ‘열화 과정(어떻게 망가지고 성능이 떨어지는지)’을 우리 연구진이 국제연구진과 함께 세계 최초로 원자 단위에서 3차원으로 직접 추적하는 데 성공했다. 이번 성과는 고성능·고내구성 연료전지 개발을 앞당겨 미래 친환경 교통수단과 에너지 전환에 크게 기여할 것으로 기대된다. 우리 대학 물리학과 양용수 교수와 신소재공학과 조은애 교수 공동연구팀이 미국 스탠퍼드대학교, 로런스 버클리 국립연구소와의 국제 공동연구를 통해 연료전지 촉매 내부의 원자 하나하나가 수천 번의 작동 사이클 동안 어떻게 움직이고, 어떤 방식으로 성능이 저하되는지를 3차원으로 직접 추적하는 데 성공했다고 14일 밝혔다. 수소연료전지는 탄소배출이 없는 차세대 친환경 에너지 기술로 주목받고 있다. 그러나 촉매로 사용되는 백금(Pt) 기반 합금은 주행 과정에서 성능이 점차 저하되는 ‘열화 현상’이 발생해 상용화의 걸림돌
2025-09-15수소는 탄소를 배출하지 않는 청정 에너지원으로 주목받고 있다. 이 가운데 물을 전기로 분해하는 수전해(water electrolysis) 기술은 친환경 수소 생산 방식으로 주목받으며, 특히 양이온 교환막 수전해(PEMWE)는 고순도 수소를 고압으로 생산할 수 있어 차세대 수소 생산 기술로 평가받는다. 그러나 기존 PEMWE 기술은 고가의 귀금속 촉매와 코팅재에 대한 의존도가 높아, 상용화에 한계를 안고 있었다. 우리 연구진이 이러한 기술적·경제적 병목을 해결할 새로운 해법을 제시했다. 우리 대학 생명화학공학과 김희탁 교수 연구팀이 한국에너지기술연구원(원장 이창근) 두기수 박사와의 공동연구를 통해, 고가의 백금(Pt) 코팅 없이도 고성능을 구현할 수 있는 차세대 수전해 기술을 개발했다고 11일 밝혔다. 연구팀은 수전해 전극에서 고활성 촉매로 주목받는 ‘이리듐 산화물(IrOx)’이 제 성능을 발휘하지 못하는 주된 원인에 집중하였다. 그 이유는
2025-06-11