< 사진 1. (왼쪽부터) KAIST 김장환 박사, 성균관대 권석준 교수, DGIST 김봉훈 교수, KAIST 김상욱 교수 >
우리 대학 신소재공학과 김상욱 교수 연구팀이 DGIST 로봇및기계전자공학과 김봉훈 교수, 성균관대 화학공학/고분자공학부 권석준 교수와 공동연구를 통해 사람의 지문과 같이 매번 다른 형태를 형성하는 무작위적인 분자조립 나노 패턴을 이용한 새로운 IoT(사물인터넷) 보안/인증 원천기술을 개발했다고 9일 밝혔다.
최근 IoT 기술이 발전함에 따라 다양한 기기들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 그러나 IoT 기기들의 해킹 사례가 빈번하게 보고되고 있으며, IoT 기술을 안전하게 사용할 수 있느냐에 대한 의문이 제기되는 실정이다.
우리 주위에 흔히 사용되는 인증 방법으로 사람의 지문이나 핸드폰 등에서 제공해주는 QR 패턴을 들 수 있다. 사람의 지문은 모든 사람에게 다르게 형성되므로 각 개인을 식별하기 위한 인증 매체로 오래전부터 사용돼왔으나, 그 크기가 눈에 보일 정도로 커서 쉽게 복제할 수 있다는 단점을 가지고 있다.
반면 최근까지도 코로나 방역에 큰 역할을 했던 QR코드는 사용할 때마다 매번 다른 패턴을 형성하므로 복제가 어렵지만, 새로이 패턴이 생길 때마다 무선통신으로 등록을 해야 하므로 에너지 소모가 크고 개인의 프라이버시가 침해되는 문제점이 지적되기도 했다.
< 그림 1. 무작위 형태의 블록공중합체 자기조립 패턴을 적층해 지문 모양의 나노 패턴 형성과정을 보여주는 모식도 >
이번에 공동연구팀이 개발한 인증기술은 김상욱 교수가 세계 최초/최고기술을 인정받고 있는 분자조립 나노 패턴 기술을 이용해 서로 다른 모양을 가지는 수십억 개의 나노 패턴을 저비용으로 만들어낼 수 있으며, 높은 보안 수준을 유지하면서도 초고속 인증이 가능하다. 또한 연구팀은 나노 크기의 소형화를 통해 눈에 보이지 않는 투명소자나 초소형 장치 또는 개미 혹은 박테리아에도 부착함으로써 미생물 인식 칩으로써의 활용 가능성도 제시했다.
공동연구팀이 개발한 기술은 복제 방지를 위한 다양한 하드웨어 인증시스템에 유용할 뿐만 아니라, 기존 소프트웨어 인증과 달리 전자기 펄스(EMP) 공격과 같은 최첨단 무기 체계에도 내구성이 있어 향후 군사 및 국가 안보 등에도 활용성이 높을 것으로 전망된다. 나아가 이상적인 난수 생성 소재 (true random number generator)로서의 활용성도 기대된다.
< 그림 2. 나노 크기의 소형화를 통해 지폐, 개미, 박테리아 위에 부착된 나노 지문 패턴 이미지 >
신소재공학과 김상욱 교수, DGIST 로봇및기계전자공학과 김봉훈 교수, 성균관대 화학공학/고분자공학부 권석준 교수가 공동 교신저자 및 KAIST 신소재공학과 졸업생인 김장환 박사가 제1 저자로 참여한 이번 연구는 전자공학 분야 최고 권위 학술지인 `네이처 일렉트로닉스(Nature electronics, JCR 상위 0.18 %)'에 7월 26일 字 게재됐다. (논문명 : Nanoscale physical unclonable function labels based on block co-polymer self-assembly).
또한 공동연구팀은 기술 개발 과정에서 국내 특허, 미국 특허, 유럽 특허 및 PCT를 출원해 이번 기술의 지적 재산권을 확보했다고 밝혔다. 해당 특허는 KAIST 교원 창업 회사인 `(주)소재창조'를 통해 사업화를 진행할 계획이다.
한편 이번 연구는 한국창의연구재단의 지원을 받아 수행됐다.
우리 대학 신소재공학과 박병국 교수팀이 물리학과 김갑진 교수 연구팀 및 현대자동차와 공동연구를 통해 자성메모리(Magnetic random-access memory, MRAM)를 기반으로 사람의 지문과 같이 매번 다른 패턴을 갖는 하드웨어 보안인증 원천 기술을 개발하는 데 성공했다고 30일 밝혔다. 박병국 교수 연구팀은 반강자성체-하부강자성체-비자성체-상부강자성체 다층박막 구조에서 무자기장(field-free) 스핀-궤도 토크(spin-orbit torque, SOT)로 동작하는 MRAM 소자의 스위칭 극성을 무작위적으로 분포시켜 물리적 복제 불가능성(physical unclonable function, 이하 PUF)을 지닌 보안소자를 개발하는 것이 가능함을 입증했다. 이 기술은 고온 및 고자기장 등의 환경에서도 높은 동작 신뢰도 및 무작위성을 유지하면서 작동 가능해 사물인터넷(IoT)을 비롯한 다양한 보안시스템에 응용될 수 있을 것으로 기대된다. PUF를 이용한 하드웨어
2022-12-02우리 대학 전기및전자공학부 노용만 교수 연구팀이 물체를 검출하는 딥러닝 신경망에 대한 적대적 공격을 방어하는 알고리즘을 개발했다고 15일 밝혔다. 최근 몇 년간 인공지능 딥러닝 신경망 기술이 나날이 발전하고 실세계에 활용되면서, 딥러닝 신경망 기술은 자율주행 및 물체검출 등 다양한 분야에서 떠오르는 핵심기술로 주목받고 있다. 하지만 현재의 딥러닝 기반 검출 네트워크는, 특정한 적대적 패턴을 입력 이미지에 악의적으로 주입하여 잘못된 예측 결과를 초래하는 적대적 공격에 대해 심각하게 취약하다. 적대적 패턴이란 공격자가 검출이 되지 않기 위해 인위적으로 만든 패턴이다. 이 패턴이 포함된 물체는 검출이 되지 않게 하는 것으로 적대적 패턴 공격이라 한다. 이러한 취약성은 인공지능으로 대표되는 딥러닝 기반의 모델을 국방이나 의료 및 자율주행 등 국민의 생명과 재산을 직접 다루는 분야에 적용할 때 크게 문제가 된다. 구체적인 예로 국방·보안을 위한 감시 정찰 분야에서
2022-11-15우리 대학을 포함한 4대 과학기술특성화대학이 22일 오전 국가정보원(원장 김규현, 이하 국정원)과 '과학기술특성화대학 연구보안교육 협의체'를 발족했다. 연구보안 교육혁신을 위해 발족한 이번 협의체에는 KAIST, GIST(광주과학기술원), DGIST(대구경북과학기술원), UNIST(울산과학기술원) 등 4대 과학기술특성화대학과 국정원, 국가과학기술인력개발원(이하 KIRD)이 창립 멤버로 참여한다. 이들은 4대 과학기술원을 시작으로 KAIST가 선도한 연구보안 교육모델을 전국 대학으로 확산시키는 일에 뜻을 모을 예정이다. 우리 대학은 2021년 국정원의 자문을 받아 KIRD과 함께 학부 및 대학원 신입생을 대상으로 하는 온라인 연구보안 교과과정을 개발하고 이를 졸업 필수과목으로 지정해 2022년 봄학기부터 교육하고 있다. 신입생 전체를 대상으로 연구보안 교육을 의무 시행한 것은 국내 대학 중 최초이며, 봄학기에 약 2,000여 명의 학생이 수강을 완료했다. 이날 행사에는
2022-06-22우리 대학 전산학부 정보보호대학원 차상길 교수가 올해 5월에 열린 정보보안 최정상 학회인 IEEE Security & Privacy[1]에서 Test-of-Time Award를 수상했다. Test-of-Time Award란 지난 10년간 정보보안 분야에서 가장 큰 영향력을 행사했던 논문에 수여하는 것으로, 올해는 총 3개의 논문이 선정되었으며, 한국인으로서는 최초이다. 선정된 논문은 차상길 교수가 지난 2012년에 발표했던 ‘Unleashing Mayhem on Binary Code’로 바이너리코드에서 버그를 자동으로 찾고, 공격코드로 연계되는 익스플로잇을 생성하는 알고리즘을 세계 최초로 제안했던 것이다 [2]. 당시 개발된 알고리즘은 인공지능 해킹대회인 CGC(Cyber Grand Challenge)[3] 등의 세계적 사이버 보안 해킹 경진대회에서 사용되는 핵심 알고리즘이라 할 수 있다. 차상길 교수는 이 논문을 계기로 바이너리 분
2022-05-27우리 대학 신소재공학과 김경민 교수 연구팀이 모트 전이 반도체의 확률적 거동을 이용한 진성 난수(True Random Number) 생성기 개발에 성공했다고 18일 밝혔다. 전자기기들이 초연결되는 메타버스 시대에는 전자기기 간에 대량의 데이터가 실시간으로 오가게 되는데, 이때 더욱 고도화된 데이터의 보안과 암호화 기술이 뒷받침돼야 한다. 현재 대부분의 난수는 소프트웨어로 생성되고 있는데, 이렇게 생성된 일반적인 난수는 소프트웨어의 해독을 통해 쉽게 예측할 수 있고 이는 데이터 보안 및 개인 정보 침해에 매우 큰 위협이 될 수 있다. 이에 반해 진성 난수는 자연의 무작위적인 물리적 현상으로부터 얻어지는 인간이 예측할 수 없는 난수로 이를 얻는 것은 궁극의 보안 기술을 구현하기 위해 필수적이다. 김경민 교수 연구팀은 진성 난수를 추출하기 위해 모트 전이 소재에 주목했다. 모트 전이 소재는 특정 온도에서 전기전도도가 부도체에서 도체로 전이하는 소재로, 이 소재에 전류를 흘려주
2021-08-18