< (왼쪽부터) 전기및전자공학부 이성주 교수, 신재민 박사과정, 칭화대 윤신 리우 교수, 위안춘 리 교수 >
우리 대학 전기및전자공학부 이성주 교수 연구팀이 국제공동연구를 통해 다수의 모바일 기기 위에서 인공지능(AI) 모델을 학습할 수 있는 연합학습 기술의 학습 속도를 4.5배 가속할 수 있는 방법론을 개발했다고 2일 밝혔다.
이성주 교수 연구팀은 지난 6/27~7/1에 열린 세계컴퓨터연합회(ACM) 주최로 진행된 제20회 모바일 시스템, 어플리케이션, 및 서비스 국제학술대회(MobiSys, International Conference on Mobile Systems, Applications, and Services)에서 연합학습(Federated Learning)의 학습 속도 향상(4.5배 가속)을 위한 데이터 샘플 최적 선택 및 데드라인 조절 방법론을 발표했다. 이 학회는 2003년에 시작됐으며 모바일 시스템, 소프트웨어, 어플리케이션, 서비스를 위한 최신 연구를 소개하는 데 초점을 맞추고 있으며, 모바일 컴퓨팅 및 시스템 분야의 최우수 학회 중 하나로 오랫동안 주목받고 있다.
이번 논문(FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients)은 KAIST 전산학부 신재민 박사과정이 제1 저자로 참여했으며, 중국 칭화대학과의 국제협력으로 이루어진 성과다 (칭화대학교 위안춘 리(Yuanchun Li) 교수, 윤신 리우(Yunxin Liu) 교수 참여).
< 그림 1. 연구 모식도 >
최근 구글에 의해 제안된 연합학습은 새로운 기계학습 기술로, 개인정보의 유출 없이 방대한 사용자 기기 위 데이터를 활용할 수 있게 하여 의료 인공지능 기술 등 새로운 인공지능 서비스를 개발할 수 있게 해 각광받고 있다. 연합학습은 구글을 비롯해 애플, 타오바오 등 세계적 빅테크 기업들이 널리 도입하고 있으나, 실제로는 인공지능 모델 학습이 사용자의 스마트폰 위에서 이뤄져, 기기에 과부하를 일으켜 배터리 소모, 성능 저하 등이 발생할 수 있는 우려를 안고 있다.
이성주 교수 연구팀은 연합학습에 참여하는 사용자 기기 위 데이터 샘플 각각의 학습 기여도 측정을 기반으로 최적의 샘플을 선택함으로써 연합학습 속도 향상을 달성했다. 또한, 샘플 선택으로 줄어든 학습 시간에 대응해, 연합학습 라운드의 데드라인 또한 최적으로 조절하는 기법을 제안해 모델 정확도의 저하 없이 학습 속도를 무려 4.5배 높였다. 이러한 방법론의 적용을 통해 연합학습으로 인한 사용자 스마트폰 과부하 문제를 최소화할 수 있을 것으로 기대된다.
이성주 교수는 "연합학습은 많은 세계적 기업들이 사용하는 중요한 기술이다ˮ며 "이번 연구 결과는 연합학습의 학습 속도를 향상하고 활용도를 높여 의미가 있으며, 컴퓨터 비전, 자연어 처리, 모바일 센서 데이터 등 다양한 응용에서 모두 좋은 성능을 보여, 빠른 파급효과를 기대한다ˮ라고 소감을 밝혔다.
한편 이 연구는 과학기술정보통신부의 재원으로 한국연구재단과 정보통신기술진흥센터의 지원을 받아 수행됐다.
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다. 연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙
2023-02-06우리 대학 전산학부는 2023년 봄학기 웹3 어플리케이션을 개발하는 Web3@KAIST 수업을 개설한다. 우리 대학에서 처음 개설하는 수업으로 KAIST 전산학부 학생 뿐 아니라 다른 학과 학생 및 외부 청강생도 수강할 수 있도록 온라인 강의로 개설한다. 기간은 3월 8일부터 6월 7일까지 매주 수요일 오후 4시-7시이며, 영어로 진행한다. 교육 내용은 블록체인 기술과 사업의 기초를 소개하고, 웹3 앱을 개발하기 위한 기술과 기획, 사업 전반에 대한 내용을 다룬다. 블록체인은 지금까지 가상자산에 집중되어 적용된 면이 있는데, 이번 수업을 통해 사회 문제와 글로벌 이슈를 풀고 실생활 적용이 가능한 웹3 앱을 함께 탐색하는 것을 목표로 한다. 최종 결과물로서 웹3 앱 시제품이나 사업계획을 도출하여 향후 투자까지 연계할 수 있는 구조를 계획하고 있다. 이번 수업은 학교와 산업계의 협력으로도 의미가 크다. KAIST에서는 블록체인 보안 연구를 하고 있는 강민석 교수와 전산학부
2023-01-18우리 대학이 '초세대 협업연구실'을 추가 개소하고 11일 오전 현판식을 개최했다. '초세대 협업연구실'은 은퇴를 앞둔 교수가 오랜 시간 축적해온 학문의 성과와 노하우를 이어가기 위해 후배 교수와 협업하는 KAIST의 독자적인 연구제도다. 2018년 초세대 협업연구실 제도를 처음 도입한 이후 7개의 연구실을 선정했으며, 작년 말 전기및전자공학부 김정호 교수의 'KAIST 시스템반도체 패키징 연구실'과 화학과 장석복 교수의 '유기반응 및 합성연구실'을 추가로 선정했다.김정호 교수가 책임교수를 맡은 'KAIST 시스템반도체 패키징 연구실'에는 조천식모빌리티대학원 안승영 교수와 신소재공학과 김경민 교수가 참여교수로 협업한다. 김정호 책임교수는 고성능 반도체 설계 및 인공지능 공학 설계(AI-X) 분야의 대표적인 석학으로 전 세계적으로 독창성을 인정받는 5I* 융합설계 원천기술을 유일하게 보유하고 있다. ☞ 5I 기술: 신호선 설계(SI, Signal Integrity), 전력선
2023-01-11우리대학이 9일부터 12일까지 KAIST-KT 공동연구센터에서 '2023 디지털인문학 겨울학교'를 개최한다. 2023 디지털인문학(Digital Humanities) 겨울학교는 인문학 연구자들이 역사나 문학 등의 연구 분야에 디지털 기술을 접목해 새로운 관점으로 인문학을 볼 수 있도록 기획된 프로그램이다. 디지털과 인문학의 융합연구를 기획하고 수행하는 데 활용할 수 있는 방법론을 나흘간의 전일제 강의와 실습을 바탕으로 교육한다. 학습 성과를 높이기 위해 석사급 이상의 연구 조교 7명이 실습 교육을 돕는다. KAIST 디지털 인문사회과학센터가 주최하고 고려대 디지털인문센터, 서울대 인문대학이 협력하며, 디지털인문학 분야 석학들이 강연하고 대담회를 갖는 심포지엄을 연계해 개최한다. 9일부터 시작되는 교육은 역사와 문학 분야로 나눠 진행한다. 역사 분야에는 허수 서울대 국사학과 교수가 '토픽 연결망 분석으로 개벽'의 논조 변화를 다시 보기'를 교육하고, 김광림 고대문명연
2023-01-06우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다. 대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다. * 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식 ** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체 이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.or
2022-12-29