< 전기및전자공학부 정명수 교수 >
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 대용량 메모리 장치부터 프로세스를 포함한 컴퓨트 익스프레스 링크(CXL) 2.0 기반의 차세대 메모리 확장 플랫폼 ‘다이렉트CXL(이하 DirectCXL)’을 세계 최초로 프로토타입 제작, 운영체제가 실장된 단대단(End-to-End) 시연에 성공했다고 1일 밝혔다.
오늘날 빅데이터 분석, 그래프 분석, 인메모리 데이터베이스 등 대규모 데이터에 기반한 응용처리가 증가함에 따라, 데이터 센터에서는 이를 더 빠르고 효율적으로 처리하기 위해 시스템의 메모리 확장에 많은 투자를 하고 있다.
그러나 우리가 흔히 알고 있는 메모리 확장 방식인 더블 데이터 대역폭(DDR) 인터페이스를 통한 메모리 확장은 추가할 수 있는 메모리 개수의 제한이 있어, 대규모 데이터 기반의 응용을 처리하기에 충분치 않다. 따라서 데이터 센터에서는 CPU와 메모리로 이루어진 메모리 노드들을 따로 구성하고, 응용을 수행하는 호스트의 메모리가 부족하면 네트워크로 연결된 메모리 노드를 자신의 메모리 공간으로 사용하는 원격 데이터 전송 기술(이하 RDMA) 기반의 메모리 확장을 사용한다.
여러 메모리 노드를 사용하는 RDMA 기반의 메모리 확장을 통해 데이터센터는 시스템의 메모리 크기를 늘릴 수 있었지만, 여전히 해결해야 할 문제들이 남아있었다. 우선 RDMA 기반 메모리 확장 시스템에서는 노드 간 데이터 이동 시 불필요한 데이터 복사, 소프트웨어의 개입 그리고 프로토콜 전환으로 인한 지연을 발생시켜 성능 저하가 발생했다. 또한 시스템의 메모리 확장 시 메모리만을 추가할 수 있는 것이 아닌, 메모리와 메모리를 제어할 CPU가 하나의 메모리 노드를 이루어 시스템에 추가되어야 했기 때문에, 추가적인 비용 소모가 발생했다.
최근 컴퓨트 익스프레스 링크(Compute Express Link, 이하 CXL) 프로토콜의 등장으로 많은 메모리 고객사와 제조사가 이러한 문제를 해결할 가능성을 확인하고 있다. CXL은 PCI 익스프레스(PCIe) 인터페이스 기반의 CPU-장치(Device) 간 연결을 위한 프로토콜로, 이를 기반으로 한 장치 연결은 기존보다 높은 성능과 확장성을 지원하는 것이 특징이다.
< 그림 1. DirectCXL 플랫폼의 개요 및 CXL1.0,1.1과 CXL2.0의 차이 >
국내외 유수 기업들이 모여 CXL 인터페이스 표준 규약을 제안하는 CXL 컨소시엄은 지난 2019년 CXL 1.0/1.1을 처음 제안했고, 이후 CXL 2.0을 발표하며 CXL 1.0/1.1에서 하나의 포트당 하나의 지역 메모리 장치만을 연결할 수 있었던 확장성 문제를 스위치 네트워크를 통해 개선, 하나의 포트를 여러 포트로 확장할 수 있도록 했다. 따라서 CXL 1.0/1.1과 달리 CXL 2.0에서는 확장된 포트에 다수의 원격 CXL 메모리 장치를 연결하는 것이 가능해 더 높은 확장성을 지원할 수 있게 됐다.
그러나 CXL 2.0의 높은 확장성에도 불구하고, 아직 CXL 연구의 방향성을 제시해줄 수 있는 시제품 개발 및 연구들이 진행되지 않아, 메모리 업계와 학계에서는 여전히 CXL1.0/1.1을 기반으로 지역 메모리 확장 장치, 시제품 개발 및 연구를 진행하고 있는 실정이다. 따라서 새로운 CXL 2.0을 통한 메모리 확장 연구의 방향성 초석을 제시할 필요성이 커졌다.
정명수 교수 연구팀이 전 세계 최초로 프로토타입한 CXL 2.0 기반 메모리 확장 플랫폼 ‘DirectCXL’은 높은 수준의 메모리 확장성을 제공하며, 빠른 속도로 대규모 데이터 처리를 가능케 한다. 이를 위해 연구팀은 메모리를 확장해 줄 장치인 ‘CXL 메모리 장치’와 호스트 ‘CXL 프로세서 (CPU)’, 여러 호스트를 다수의 CXL 메모리 장치에 연결해주는 ‘CXL 네트워크 스위치’ 그리고 메모리 확장 플랫폼 전반을 제어할 리눅스 운영체제 기반의‘CXL 소프트웨어 모듈’을 개발해 플랫폼을 구성했다.
< 그림 2. DirectCXL과 기존 RDMA 기반 메모리 확장 플랫폼의 지연시간 및 응용 실행시간 비교 그래프 >
구성된 ‘DirectCXL’ 플랫폼을 사용한 시스템에서는 확장된 메모리 공간에 직접 접근해 데이터를 CPU의 캐시로 가져와 불필요한 메모리 복사와 소프트웨어의 개입이 없으며, PCIe 인터페이스만을 사용해 프로토콜 전환을 없애 지연시간을 최대한 줄였다. 또한 추가적인 CPU가 필요 없는 CXL 메모리 장치를 CXL 스위치에 연결하는 것만으로 메모리 확장이 가능해 효율적인 시스템의 구성이 가능했다. 국내외 소수 대기업에서 메모리 장치 일부 단품에 대한 구성을 보여준 준 사례는 있지만, CXL 2.0 기반, CPU부터 CXL 스위치, 메모리 장치가 장착된 시스템에서 운영체제를 동작시키고 데이터 센터와 응용을 실행하고 시연한 것은 정명수 교수 연구팀이 처음이다.
연구팀은 자체 제작한 메모리 확장 플랫폼 ‘DirectCXL’의 성능을 검증하기 위해 CXL 동작이 가능한 다수의 자체 개발 호스트 컴퓨터가 CXL 네트워크 스위치를 통해 연결된 다수 CXL 메모리 장치들을 제어하는 환경을 구성했다. 이후 구성된 플랫폼을 통해 CXL 메모리 장치의 성능을 기존 RDMA 기반 메모리 확장 솔루션과 비교했다. 연구팀이 제안한 ‘DirectCXL’은 확장된 메모리에 대한 접근 시간 검증에서 기존 RDMA 기반의 메모리 확장 솔루션 대비 8.3배의 성능 향상을 보였으며, 많은 메모리 접근을 요구하는 그래프 응용처리 및 인 메모리 데이터베이스 응용처리에서도 각각 2.3배, 2배의 성능 향상을 이뤄냈다.
< 그림 3. 연구팀이 제안하는 DirectCXL 프로토타입 시연 영상 일부 >
정명수 교수는 "이번에 개발된 ‘DirectCXL’은 기존 RDMA기반 메모리 확장 솔루션보다 훨씬 적은 비용으로도 뛰어난 성능과 높은 확장성을 제공하는 만큼 데이터센터나 고성능 컴퓨팅 시스템에서의 수요가 클 것으로 기대한다ˮ며, "세계 최초로 개발된 CXL 2.0 기반의 단대단 프로토타입 플랫폼을 활용해 CXL이 적용된 새로운 운영체제(OS)는 물론 시스템 소프트웨어, 솔루션 시제품 고도화를 통해 향후 CXL을 활용한 시스템 구축에 초석을 제공할 것이다ˮ라고 말했다.
한편 이번 연구는 미국 칼스배드에서 지난 7월에 11에 열린 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2022'에 ‘DirectCXL’이라는 논문명(Direct Access, High-performance Memory Disaggregation with DirectCXL)으로 발표되었다. 또한 미국 산호세에서 열리는 8월 2/3일에 플래시 메모리 정상회담(Flash Memory Summit)에서 CXL 컨소시움이 이끄는 CXL포럼에 발표될 예정이다.
‘DirectCXL’의 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다. DirectCXL은 데이터센터와 클라우드 시스템에서 다양한 응용에 쉽게 적용 가능하며, 하나의 실시예로 메타(페이스북) 추천시스템 기계학습 데이터 가속에 대한 시연 영상을 연구실 유튜브(https://youtu.be/jm8k-JM0qbM) 에서 확인할 수 있다. 해당 영상은 각 개인의 대규모 특성 자료들(텐서)을 CXL 메모리 풀에 올려두고 빅데이터를 활용한 인공지능이 친구나 광고 등 개인 특성에 맞는 자료들을 추천하게 하는 시스템으로 기존 데이터 센터의 원격메모리에 비해 3.2배 이상의 사용자 수준 성능 향상을 보여주고 있다.
우리 대학 제조AI빅데이터센터(센터장 김일중)가 ʻ제조데이터 촉진자 동문 네트워킹 데이 및 표준화 포럼(이하, 네트워킹 데이)ʼ를 29일 개최했다. 네트워킹 데이는 제조AI빅데이터센터가 작년부터 운영하고 있는 ‘제조데이터 촉진자 양성사업’의 교육 수료생 170명을 대상으로 진행되었다. 제조데이터 촉진자 양성사업은 제조AI 빅데이터교육에 제조 도메인 지식과 창의적 문제해결 능력을 접목하여 미래 제조혁신을 이끌어갈 인재인 제조데이터 촉진자를 양성하기 위한 교육사업이다. 교육은 중소·중견 제조기업 및 솔루션 공급기업의 재직자를 교육대상으로 한다. 교육과정은 제조AI 이론 교육 및 현장실습으로 구성되어 있으며, 제조AI가 적용된 우수현장을 견학할 수 있는 기회도 제공하고 있다. 제조AI빅데이터센터는 해당 사업으로 220여명의 제조데이터 촉진자를 양성할 예정이다. 이미 2022년 한 해 동안 101명, 2023년 상반기동안 70명의 교육 수료생을
2023-11-30‘노란 포도'나 `보라색 바나나'와 같이 본 적 없는 시각 개념을 이해하고 상상하는 인공지능 능력 구현이 가능해졌다. 우리 대학 전산학부 안성진 교수 연구팀이 구글 딥마인드 및 미국 럿거스 대학교와의 국제 공동 연구를 통해 시각적 지식을 체계적으로 조합해 새로운 개념을 이해하는 인공지능 새로운 모델과 프로그램을 수행하는 벤치마크를 개발했다고 30일 밝혔다. 인간은 `보라색 포도'와 `노란 바나나' 같은 개념을 학습하고, 이를 분리한 뒤 재조합해 `노란 포도'나 `보라색 바나나'와 같이 본 적 없는 개념을 상상하는 능력이 있다. 이런 능력은 체계적 일반화 혹은 조합적 일반화라고 불리며, 범용 인공지능을 구현하는 데 있어 핵심적인 요소로 여겨진다. 체계적 일반화 문제는 1988년 미국의 저명한 인지과학자 제리 포더(Jerry Fodor)와 제논 필리쉰(Zenon Pylyshyn)이 인공신경망이 이 문제를 해결할 수 없다고 주장한 이후, 35년 동안 인공지능 딥러
2023-11-30우리 대학이 28일 오후 대전 본원 정보전자공학동에서 '인공지능반도체대학원 개원식'을 열었다. 인공지능반도체대학원(책임교수 유회준)은 지난 5월 과학기술정보통신부의 인공지능반도체 분야 석·박사 고급인재 양성사업에 선정돼 설립됐다. 과기부로부터 연 30억 원, 대전광역시에서 연 9억 원을 지원 받는다. 올 가을학기부터 학사 운영을 시작해 12명의 석·박사 과정 학생이 재학 중이며, 향후 5년간 150명의 인재를 배출할 계획이다. 이날 열린 개원식에는 이광형 총장, 이장우 대전광역시장, 더불어민주당 조승래 의원(대전 유성구 갑), 강도현 과기정통부 정책실장, 전성배 정보통신기획평가원장, 방승찬 ETRI 원장과 산학 협력기업 관계자 등이 함께 참석해 현판 제막식을 진행했다. 유회준 책임교수는 "KAIST는 반도체 공정과 설계 등 전 분야에 걸쳐 세계적인 경쟁력을 갖춘 교육과 연구 여건이 완비되었다"라고 전했다.2008년부터 인공지능반도체 기술 개
2023-11-28유엔기구(UN)의 지속가능발전목표(SDGs)에 따르면 하루 2달러 이하로 생활하는 절대빈곤 인구가 7억 명에 달하지만 그 빈곤의 현황을 제대로 파악하기는 쉽지 않다. 전 세계 중 53개국은 지난 15년 동안 농업 관련 현황 조사를 하지 못했으며, 17개국은 인구 센서스(인구주택 총조사)조차 진행하지 못했다. 이러한 데이터 부족을 극복하려는 시도로, 누구나 웹에서 받아볼 수 있는 인공위성 영상을 활용해 경제 지표를 추정하는 기술이 주목받고 있다. 우리 대학 차미영-김지희 교수 연구팀이 기초과학연구원, 서강대, 홍콩과기대(HKUST), 싱가포르국립대(NUS)와 국제공동연구를 통해 주간 위성영상을 활용해 경제 상황을 분석하는 새로운 인공지능(AI) 기법을 개발했다고 21일 밝혔다. 연구팀이 주목한 것은 기존 통계자료를 기반으로 학습하는 일반적인 환경이 아닌, 기초 통계도 미비한 최빈국(最貧國)까지 모니터링할 수 있는 범용적인 모델이다. 연구팀은 유럽우주국(ESA)이 운용하며 무료로
2023-11-21의생명공학 연구에 일반적으로 사용되는 현미경 기술들은 염색이나 유전자 조작을 해야만 관찰할 수 있다는 한계가 있다. 하지만 염색이 된 세포들은 치료 목적으로 활용할 수 없어 세포나 조직을 살아있는 상태 그대로 관찰할 수 있는 홀로그래픽 현미경과 이를 체계적으로 분석할 수 있는 인공지능을 결합한 의생명공학 연구의 활용 방안 및 문제점에 대한 분석이 필요하다. 우리 대학 물리학과 박용근 교수 연구팀이 국제 학술지 `네이처 메소드(Nature Methods)'에 홀로그래픽 현미경과 인공지능 융합 연구 방법론을 조망한 견해 (perspective)를 게재했다고 14일 전했다. 연구팀은 기존 현미경 기술 대비 홀로그래픽 현미경의 이미지 복원 기술이 시간을 많이 필요하고 전처리 없이 세포나 조직을 찍을 수 있다는 장점이 있지만, 대신에 그만큼 결과물 분석에 많은 시간과 노력을 들여야 한다고도 분석했다. 박용근 교수 연구팀은 이런 문제점을 홀로그래픽 현미경과 인공지능과의 통합을 통해
2023-11-14