< 전기및전자공학부 정명수 교수 >
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 대용량 메모리 장치부터 프로세스를 포함한 컴퓨트 익스프레스 링크(CXL) 2.0 기반의 차세대 메모리 확장 플랫폼 ‘다이렉트CXL(이하 DirectCXL)’을 세계 최초로 프로토타입 제작, 운영체제가 실장된 단대단(End-to-End) 시연에 성공했다고 1일 밝혔다.
오늘날 빅데이터 분석, 그래프 분석, 인메모리 데이터베이스 등 대규모 데이터에 기반한 응용처리가 증가함에 따라, 데이터 센터에서는 이를 더 빠르고 효율적으로 처리하기 위해 시스템의 메모리 확장에 많은 투자를 하고 있다.
그러나 우리가 흔히 알고 있는 메모리 확장 방식인 더블 데이터 대역폭(DDR) 인터페이스를 통한 메모리 확장은 추가할 수 있는 메모리 개수의 제한이 있어, 대규모 데이터 기반의 응용을 처리하기에 충분치 않다. 따라서 데이터 센터에서는 CPU와 메모리로 이루어진 메모리 노드들을 따로 구성하고, 응용을 수행하는 호스트의 메모리가 부족하면 네트워크로 연결된 메모리 노드를 자신의 메모리 공간으로 사용하는 원격 데이터 전송 기술(이하 RDMA) 기반의 메모리 확장을 사용한다.
여러 메모리 노드를 사용하는 RDMA 기반의 메모리 확장을 통해 데이터센터는 시스템의 메모리 크기를 늘릴 수 있었지만, 여전히 해결해야 할 문제들이 남아있었다. 우선 RDMA 기반 메모리 확장 시스템에서는 노드 간 데이터 이동 시 불필요한 데이터 복사, 소프트웨어의 개입 그리고 프로토콜 전환으로 인한 지연을 발생시켜 성능 저하가 발생했다. 또한 시스템의 메모리 확장 시 메모리만을 추가할 수 있는 것이 아닌, 메모리와 메모리를 제어할 CPU가 하나의 메모리 노드를 이루어 시스템에 추가되어야 했기 때문에, 추가적인 비용 소모가 발생했다.
최근 컴퓨트 익스프레스 링크(Compute Express Link, 이하 CXL) 프로토콜의 등장으로 많은 메모리 고객사와 제조사가 이러한 문제를 해결할 가능성을 확인하고 있다. CXL은 PCI 익스프레스(PCIe) 인터페이스 기반의 CPU-장치(Device) 간 연결을 위한 프로토콜로, 이를 기반으로 한 장치 연결은 기존보다 높은 성능과 확장성을 지원하는 것이 특징이다.
< 그림 1. DirectCXL 플랫폼의 개요 및 CXL1.0,1.1과 CXL2.0의 차이 >
국내외 유수 기업들이 모여 CXL 인터페이스 표준 규약을 제안하는 CXL 컨소시엄은 지난 2019년 CXL 1.0/1.1을 처음 제안했고, 이후 CXL 2.0을 발표하며 CXL 1.0/1.1에서 하나의 포트당 하나의 지역 메모리 장치만을 연결할 수 있었던 확장성 문제를 스위치 네트워크를 통해 개선, 하나의 포트를 여러 포트로 확장할 수 있도록 했다. 따라서 CXL 1.0/1.1과 달리 CXL 2.0에서는 확장된 포트에 다수의 원격 CXL 메모리 장치를 연결하는 것이 가능해 더 높은 확장성을 지원할 수 있게 됐다.
그러나 CXL 2.0의 높은 확장성에도 불구하고, 아직 CXL 연구의 방향성을 제시해줄 수 있는 시제품 개발 및 연구들이 진행되지 않아, 메모리 업계와 학계에서는 여전히 CXL1.0/1.1을 기반으로 지역 메모리 확장 장치, 시제품 개발 및 연구를 진행하고 있는 실정이다. 따라서 새로운 CXL 2.0을 통한 메모리 확장 연구의 방향성 초석을 제시할 필요성이 커졌다.
정명수 교수 연구팀이 전 세계 최초로 프로토타입한 CXL 2.0 기반 메모리 확장 플랫폼 ‘DirectCXL’은 높은 수준의 메모리 확장성을 제공하며, 빠른 속도로 대규모 데이터 처리를 가능케 한다. 이를 위해 연구팀은 메모리를 확장해 줄 장치인 ‘CXL 메모리 장치’와 호스트 ‘CXL 프로세서 (CPU)’, 여러 호스트를 다수의 CXL 메모리 장치에 연결해주는 ‘CXL 네트워크 스위치’ 그리고 메모리 확장 플랫폼 전반을 제어할 리눅스 운영체제 기반의‘CXL 소프트웨어 모듈’을 개발해 플랫폼을 구성했다.
< 그림 2. DirectCXL과 기존 RDMA 기반 메모리 확장 플랫폼의 지연시간 및 응용 실행시간 비교 그래프 >
구성된 ‘DirectCXL’ 플랫폼을 사용한 시스템에서는 확장된 메모리 공간에 직접 접근해 데이터를 CPU의 캐시로 가져와 불필요한 메모리 복사와 소프트웨어의 개입이 없으며, PCIe 인터페이스만을 사용해 프로토콜 전환을 없애 지연시간을 최대한 줄였다. 또한 추가적인 CPU가 필요 없는 CXL 메모리 장치를 CXL 스위치에 연결하는 것만으로 메모리 확장이 가능해 효율적인 시스템의 구성이 가능했다. 국내외 소수 대기업에서 메모리 장치 일부 단품에 대한 구성을 보여준 준 사례는 있지만, CXL 2.0 기반, CPU부터 CXL 스위치, 메모리 장치가 장착된 시스템에서 운영체제를 동작시키고 데이터 센터와 응용을 실행하고 시연한 것은 정명수 교수 연구팀이 처음이다.
연구팀은 자체 제작한 메모리 확장 플랫폼 ‘DirectCXL’의 성능을 검증하기 위해 CXL 동작이 가능한 다수의 자체 개발 호스트 컴퓨터가 CXL 네트워크 스위치를 통해 연결된 다수 CXL 메모리 장치들을 제어하는 환경을 구성했다. 이후 구성된 플랫폼을 통해 CXL 메모리 장치의 성능을 기존 RDMA 기반 메모리 확장 솔루션과 비교했다. 연구팀이 제안한 ‘DirectCXL’은 확장된 메모리에 대한 접근 시간 검증에서 기존 RDMA 기반의 메모리 확장 솔루션 대비 8.3배의 성능 향상을 보였으며, 많은 메모리 접근을 요구하는 그래프 응용처리 및 인 메모리 데이터베이스 응용처리에서도 각각 2.3배, 2배의 성능 향상을 이뤄냈다.
< 그림 3. 연구팀이 제안하는 DirectCXL 프로토타입 시연 영상 일부 >
정명수 교수는 "이번에 개발된 ‘DirectCXL’은 기존 RDMA기반 메모리 확장 솔루션보다 훨씬 적은 비용으로도 뛰어난 성능과 높은 확장성을 제공하는 만큼 데이터센터나 고성능 컴퓨팅 시스템에서의 수요가 클 것으로 기대한다ˮ며, "세계 최초로 개발된 CXL 2.0 기반의 단대단 프로토타입 플랫폼을 활용해 CXL이 적용된 새로운 운영체제(OS)는 물론 시스템 소프트웨어, 솔루션 시제품 고도화를 통해 향후 CXL을 활용한 시스템 구축에 초석을 제공할 것이다ˮ라고 말했다.
한편 이번 연구는 미국 칼스배드에서 지난 7월에 11에 열린 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2022'에 ‘DirectCXL’이라는 논문명(Direct Access, High-performance Memory Disaggregation with DirectCXL)으로 발표되었다. 또한 미국 산호세에서 열리는 8월 2/3일에 플래시 메모리 정상회담(Flash Memory Summit)에서 CXL 컨소시움이 이끄는 CXL포럼에 발표될 예정이다.
‘DirectCXL’의 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다. DirectCXL은 데이터센터와 클라우드 시스템에서 다양한 응용에 쉽게 적용 가능하며, 하나의 실시예로 메타(페이스북) 추천시스템 기계학습 데이터 가속에 대한 시연 영상을 연구실 유튜브(https://youtu.be/jm8k-JM0qbM) 에서 확인할 수 있다. 해당 영상은 각 개인의 대규모 특성 자료들(텐서)을 CXL 메모리 풀에 올려두고 빅데이터를 활용한 인공지능이 친구나 광고 등 개인 특성에 맞는 자료들을 추천하게 하는 시스템으로 기존 데이터 센터의 원격메모리에 비해 3.2배 이상의 사용자 수준 성능 향상을 보여주고 있다.
우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30새 정부 출범과 함께 AI 및 과학기술 분야에 대한 사회적 관심이 크게 높아진 가운데, 우리 대학은 과학기술을 기반으로 국가 혁신을 주도하고 인류의 문제 해결에 앞장서는‘AI 중심 가치 창출형 과학기술특성화대학’으로 거듭날 계획임을 24일 밝혔다. 대한민국이 기술 주도형 사회로 대전환을 맞이하는 시점에서 KAIST는 지난 반세기 동안 국가 발전사의 '스타터킷(Starter Kit)' 역할을 수행해온 경험을 토대로, 단순한 교육·연구기관을 넘어 새로운 사회적 가치를 창출하는 글로벌 혁신 허브로의 도약을 준비하고 있다. 특히 우리 대학은 대한민국이 인공지능 주요 3개국(G3)에 도약할 수 있도록 전 국민이 소외 없이 AI를 활용할 수 있는 'AI 기본사회' 실현을 비전으로 제시했다. 이를 위해 KAIST가 주관하는 대한민국을 대표하는 ‘국가AI연구거점’사업(책임자 김기응)을 통해 AI 기술을 기반으로 산업 경쟁력을 제고하고 사회
2025-06-24임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일
2025-06-16“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다. 이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입해, 그 효과와 실용 가능성을 실제 교육
2025-06-05