< (왼쪽부터) 전기및전자공학부 김성민 교수, 배강민 박사과정 >
우리 대학 전기및전자공학부 김성민 교수 연구팀이 세계 최초로 천 개에서 수천만 개에 이르는 대규모 사물인터넷(IoT) 동시 통신을 위한 `밀리미터파 후방산란 시스템'을 개발했다고 28일 밝혔다.
밀리미터파 후방산란 기술은 대규모 통신을 지원하기 위한 기술로 주목받고 있다. 밀리미터파 통신은 30~300기가헤르츠(GHz)의 반송파 주파수 대역을 활용하는 통신으로, 5G/6G 등 표준에서 도입을 준비 중인 차세대 통신 기술이다. 이는 넓은 주파수 대역폭(10GHz 이상)을 확보할 수 있어 높은 확장성을 제공한다.
또한, 후방산란 기술은 기기가 직접 무선 신호를 생성하지 않고 공중에 존재하는 무선 신호를 반사해 정보를 전달하는 방식으로, 무선 신호를 생성하는데 전력을 소모하지 않기 때문에 초저전력 통신을 가능하게 할 수 있는 기술이다. 이는 낮은 설치비용으로 대규모 사물인터넷 기기의 광범위한 인터넷 연결성을 제공할 수 있다.
김성민 교수 연구팀은 밀리미터파 후방산란을 이용해 수천만 개의 사물인터넷 기기들이 실내에 배치된 복잡한 통신 환경에서 모든 신호가 동시에 복조되도록 설계하는 데 성공했다.
전기및전자공학부 배강민 박사과정이 제1 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2022에 이번 6월 발표됐으며, 최우수논문상을 수상했다. (논문명: OmniScatter: extreme sensitivity mmWave backscattering using commodity FMCW radar). 이는 작년 우리 대학 전기및전자공학부에서 아시아 대학 최초로 ACM 모비시스 2021 최우수논문상을 받은 이후 연속된 수상으로 더욱 의미가 깊다.
5G/6G 네트워크의 핵심 구성 요소 중 하나인 사물인터넷은 기하급수적인 성장세를 보이고 있으며, 2035년까지 1조 개 이상의 기기가 생산될 전망이다. 대규모 사물인터넷 기기들의 인터넷 연결을 지원하기 위해서 5G, 6G 표준 각각 4G 대비 10배 및 100배의 네트워크 밀도를 지원하는 것을 목표로 하고 있다. 따라서, 대규모 통신을 위한 실용적인 시스템의 필요성이 대두되고 있다.
그러나 현재 밀리미터 후방산란 시스템은 밀리미터파의 높은 주파수에 따른 신호 감쇄와 후방산란 시스템의 반사 손실이 합쳐져 제한적인 환경에서만 통신이 가능하다. 즉, 다양한 장애물과 반사체가 설치된 복잡한 통신 환경에서 작동하지 않아 상대적으로 자유로운 설치가 필요한 대규모 사물인터넷 기기에 광범위한 인터넷 연결성을 제공하는 데 한계가 있다.
< 그림 1. 대규모 통신을 실험하기 위해 1100개 태그들이 동시에 발신하는 환경을 추적 기반 실험으로 평가 >
연구팀은 FMCW(주파수 변조 연속파) 레이더의 높은 코딩 이득에서 해답을 찾았다. 연구팀은 레이더의 코딩 이득을 그대로 유지하는 동시에, 후방산란 신호와 주변 잡음을 원천적으로 분리해내는 신호 처리 방법을 개발해 기존 FMCW 레이더 대비 십만 배 이상 개선된 수신감도를 달성했다. 이는 실용적인 환경에서의 통신을 지원한다. 더욱이, 연구팀은 태그의 물리적인 위치에 따라 복조된 신호의 주파수가 달라지는 레이더 특성을 활용해 위치에 따라 통신 채널을 자연적으로 할당 받는 후방산란 시스템을 설계했다. 이는 초저전력 후방산란 통신이 10GHz 이상의 밀리미터파 주파수 대역폭을 전부 활용할 수 있게 하여 수천만 사물인터넷 기기들의 동시 통신을 지원한다.
개발된 시스템은 상용 기성품 레이더를 게이트웨이로 활용할 수 있어 적용 용이성이 높다. 또한, 연구팀의 후방산란 기술은 10마이크로와트(μW) 이하의 초저전력으로 작동해 코인 전지 하나로 40년 이상 구동 가능해 설치 및 유지보수 비용을 크게 줄일 수 있다.
< 그림 2. ACM 모비시스 수상 모습 >
< 그림 3. ACM 모비시스 상장 >
연구팀은 다양한 장애물과 반사체가 설치된 사무실 환경에 무작위로 설치된 밀리미터파 후방산란 기기들의 통신이 가능함을 확인했다. 나아가 연구팀은 실험을 통해 총 1,100개의 기기가 송신하는 정보를 동시에 수신하는 것이 가능함을 확인하여 대규모 사물인터넷 구동을 검증했다.
이번 성과는 5G/6G 등 차세대 통신에서 요구하는 네트워크 밀도를 훨씬 웃도는 연결성을 자랑한다. 이에, 이번 시스템은 향후 도래할 초연결 시대를 위한 디딤돌 역할을 할 수 있을 것으로 기대된다.
김성민 교수는 "밀리미터파 후방산란은 대규모로 사물인터넷 기기들을 구동할 수 있는 꿈의 기술이며 이는 기존 어떠한 기술보다도 더욱 대규모의 통신을 초저전력으로 구동할 수 있다ˮ라며 "이 기술이 앞으로 도래할 초연결 시대에 사물인터넷의 보급을 위해 적극적으로 활용되길 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다. ※ 논문명 : Metabolic engineering for sustainability and health ※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은
2023-01-25우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 미생물에서 화학물질을 생산하기 위한 바이오 화학반응을 총망라한 웹 기반의 합성 지도를 완성했다고 29일 밝혔다. 이번 연구는 국제학술지인 `생명공학 동향(Trends in Biotechnology)'에 8월 10일 字 게재됐다. ※ 논문명 : An interactive metabolic map of bio-based chemicals ※ 저자 정보 : 장우대(한국과학기술원, 공동 제1 저자), 김기배(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 3명 급격한 기후 변화와 환경오염에 대응하기 위해 석유화학 제품을 미생물을 활용해 생산하는 연구가 주목받고 있다. 미생물을 이용해 다양한 화학 물질, 재료, 연료 등을 합성하기 위해선 목표 물질의 생합성 경로를 탐색 및 발굴해 미생물 내에 도입하는 것이 우선돼야 한다. 또한, 다양한 화학물질을 효율적으로 합성하기 위해선 미생물을 이용한 생물공학적
2022-08-29우리 대학 신소재공학과 김상욱 교수 연구팀이 DGIST 로봇및기계전자공학과 김봉훈 교수, 성균관대 화학공학/고분자공학부 권석준 교수와 공동연구를 통해 사람의 지문과 같이 매번 다른 형태를 형성하는 무작위적인 분자조립 나노 패턴을 이용한 새로운 IoT(사물인터넷) 보안/인증 원천기술을 개발했다고 9일 밝혔다. 최근 IoT 기술이 발전함에 따라 다양한 기기들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 그러나 IoT 기기들의 해킹 사례가 빈번하게 보고되고 있으며, IoT 기술을 안전하게 사용할 수 있느냐에 대한 의문이 제기되는 실정이다. 우리 주위에 흔히 사용되는 인증 방법으로 사람의 지문이나 핸드폰 등에서 제공해주는 QR 패턴을 들 수 있다. 사람의 지문은 모든 사람에게 다르게 형성되므로 각 개인을 식별하기 위한 인증 매체로 오래전부터 사용돼왔으나, 그 크기가 눈에 보일 정도로 커서 쉽게 복제할 수 있다는 단점을 가지고 있다. 반면 최근까지도 코로나 방역에 큰
2022-08-09우리 연구진이 오늘날 인공지능 딥러닝 모델들을 처리하기 위해 필수적으로 사용되는 기계학습 시스템을 세계 최고 수준의 성능으로 끌어올렸다. 우리 대학 전산학부 김민수 교수 연구팀이 딥러닝 모델을 비롯한 기계학습 모델을 학습하거나 추론하기 위해 필수적으로 사용되는 기계학습 시스템의 성능을 대폭 높일 수 있는 세계 최고 수준의 행렬 연산자 융합 기술(일명 FuseME)을 개발했다고 20일 밝혔다. 오늘날 광범위한 산업 분야들에서 사용되고 있는 딥러닝 모델들은 대부분 구글 텐서플로우(TensorFlow)나 IBM 시스템DS와 같은 기계학습 시스템을 이용해 처리되는데, 딥러닝 모델의 규모가 점점 더 커지고, 그 모델에 사용되는 데이터의 규모가 점점 더 커짐에 따라, 이들을 원활히 처리할 수 있는 고성능 기계학습 시스템에 대한 중요성도 점점 더 커지고 있다. 일반적으로 딥러닝 모델은 행렬 곱셈, 행렬 합, 행렬 집계 등의 많은 행렬 연산자들로 구성된 방향성 비순환 그래프(Dire
2022-06-20우리 대학 정재웅(사진) 전기및전자공학부 교수가 KAIST가 주관하고 현우문화재단(이사장 곽수일, 서울대학교 경영대학 명예교수)이 후원하는 `현우 KAIST 학술상' 수상자로 선정됐다. 시상식은 이달 31일 오전 10시 학술문화관 정근모 홀에서 개최된다. 2021년 처음 시행에 이어 올해 두 번째로 시행되는 `현우 KAIST 학술상'은 현우문화재단 곽수일 이사장이 KAIST에서 우수한 학술적 업적을 남긴 학자들을 매년 포상하고자 기부한 재원을 통해 신설된 상이다. 우리 대학은 현우재단 선정위원과 교원포상추천위원회의 엄격한 심사를 거쳐 KAIST를 대표할 수 있는 탁월한 학술 업적을 이룬 교원을 매년 1명 선정해 상패와 포상금 1,000만 원을 시상할 계획이다. 올해의 수상자로 선정된 정 교수는 인류의 난제 중 하나인 뇌 질환 극복을 목표로 사물인터넷(IoT) 기반의 무선 원격 뇌 신경회로 제어 시스템을 세계 최초로 개발하는 등 해당 분야를 선도해왔다. 본 연구는 202
2022-05-30