〈 김상욱 교수, 진형민 연구원 〉
우리 대학 신소재공학과 김상욱 교수 연구팀이 카메라의 플래시를 이용해 반도체를 제작하는 기술을 개발했다.
이 기술은 반도체용 7나노미터 패턴 기법으로 한 번의 플래시를 조사하는 것만으로 대면적에서 초미세 패턴을 제작할 수 있다. 향후 고효율, 고집적 반도체 소자 제작 등에 활용 가능할 것으로 기대된다.
진형민 연구원, 박대용 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 8월 21일자 온라인 판에 게재됐다.
4차 산업혁명의 주요 요소인 인공지능, 사물인터넷, 빅데이터 등의 기술에는 고용량, 고성능 반도체 소자가 핵심적으로 필요하다. 이러한 차세대 고집적 반도체 소자를 만들기 위해서는 패턴을 매우 작게 형성하는 리소그래피(Lithography) 기술의 개발이 필수적이다.
현재 관련 업계에서는 작은 패턴 제작에 주로 광 리소그래피(Photolithograph) 기술을 이용하고 있다. 하지만 이 기술은 10나노미터 이하의 패턴을 형성하기엔 한계가 있다.
고분자를 이용한 분자조립 패턴 기술은 공정비용이 저렴하고 10나노미터 이하 패턴 형성이 가능해 광 리소그래피를 대신할 차세대 기술로 각광받고 있다. 그러나 고온 열처리나 유독성 증기 처리에 시간이 많이 소요되기 때문에 대량 생산이 어려워 상용화에 한계가 있다.
연구팀은 고분자 분자조립 패턴 기술의 문제 해결을 위해 순간적으로 강한 빛을 내는 카메라 플래시를 활용했다. 플래시 빛을 이용하면 15 밀리 초(1밀리 초 : 천분의 1초) 내에 7나노미터의 반도체 패턴을 구현할 수 있고, 대면적에서 수십 밀리 초의 짧은 시간 내에 수 백도의 고온을 낼 수 있다.
연구팀은 이 기술을 고분자 분자 조립에 응용해 단 한 번의 플래시를 조사하는 것으로 분자 조립 패턴을 형성할 수 있음을 증명했다.
또한 연구팀은 고온 열처리 공정이 불가능한 고분자 유연 기판에도 적용이 가능함을 확인했다. 이를 통해 차세대 유연 반도체 제작에 응용할 수 있을 것으로 보인다.
연구팀은 카메라 플래시 광열 공정을 분자 조립 기술에 도입해 분자 조립 반도체기술의 실현을 앞당길 수 있는 고효율의 기술이라고 밝혔다.
연구를 주도한 김상욱 교수는 “분자조립 반도체 기술은 그 잠재성에도 불구하고 공정효율 제고가 큰 숙제로 남아 있었다”며 “이번 기술은 분자조립기반 반도체의 실용화에 획기적 해결책이 될 것이다”고 말했다.
신소재공학과 이건재 교수, 부산대학교 재료공학과 김광호 교수와의 공동으로 진행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 플래시 광을 이용한 반도체 패턴 형성
사진2. 플래시 광을 이용한 분자조립 패턴 형성 모식도
사진3. 다양한 가이드 패턴을 이용한 자기조립 패턴 제어와 고분자 유연기판에서의 플래시 자기조립 패턴 형성
우리 대학이 인공지능반도체 대학원(KAIST Graduate School of AI Semiconductor)을 설립해 석·박사과정 신입생 모집을 시작한다. 인공지능(AI) 반도체 기술은 챗GPT 등 사회 전반을 크게 변혁시키고 있는 인공지능의 핵심 기술이다. 정부는 인공지능과 시스템반도체를 혁신성장 전략투자 분야로 지정한 바 있으며, 인공지능반도체는 두 핵심 전략의 공통 요소로 국가의 차세대 성장동력으로 주목받고 있다. 하지만, 기술 선점 및 가치 창출을 위한 국내 전문 인력은 절대적으로 부족한 상태로 인공지능반도체 기술의 주도권을 확보를 위한 고급인력양성이 시급한 실정이다. 우리 대학은 2008년부터 인공지능반도체 기술 개발을 시작해 현재까지 세계 기술 개발의 흐름을 선도하고 있으며, 과학기술정보통신부의 인공지능반도체 고급인재 양성사업에 지난 5월 선정돼 인공지능반도체 대학원을 설립했다. 올 가을학기부터 학사 운영을 시작하는 인공지능반도체 대학원에서는 인공
2023-06-02우리 대학이 반도체 분야의 선두 주자로서 미래 반도체 산업을 이끌어나갈 세계적인 인력 양성을 위해 반도체공학대학원(Graduate School of Semiconductor Technology)을 설립했다. 반도체는 국가안보 및 기술패권 확보를 위해 중요한 국가자산으로 정보통신, 자동차, 에너지, 의료 등 다양한 산업 분야에 핵심 기술이다. 디지털화가 가속되고 첨단 기술이 도약할수록 반도체 산업의 중요성은 더욱 커질 것으로 예상되며, 반도체 기술에 대한 연구개발과 새로운 혁신 기술의 발굴이 필수적으로 요구되고 있다.우리 대학 반도체공학대학원은 산업자원통상자원부의 ‘반도체특성화대학원’ 사업 및 대전시의 지원을 받아 설립됐다. 반도체 기술에 대한 깊은 이해와 전문성을 갖추고 대한민국의 미래 반도체 산업을 이끌어나갈 리더를 양성할 계획이다. 전기및전자공학부, 신소재공학과, 생명화학공학과, 기계공학과, 물리학과 등 5개 학과 32명의 교원이 참여해 반도체 소자
2023-06-01최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다. 최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을
2023-05-25최근 반도체 소자의 소형화로 인해 과열점(hot spot)에서 발생한 열이 효과적으로 분산되지 않아 소자의 신뢰성과 내구성이 저하되고 있다. 기존의 열관리 기술만으로는 심각해지는 발열 문제를 관리하는 데 한계가 있으며, 소자가 더욱 집적화됨에 따라 전통적 열관리 기술에서 탈피해 극한 스케일에서의 열전달 현상에 대한 근본적 이해를 바탕으로 한 접근이 필요하다. 기판 위에 증착된 금속 박막에서 발생하는 표면파에 의한 새로운 열전달 방식을 발견해 해결책을 제시하여 화제다. 우리 대학 기계공학과 이봉재 교수 연구팀이 세계 최초로 기판 위에 증착된 금속 박막에서 ‘표면 플라즈몬 폴라리톤’에 의해 발생하는 새로운 열전달 모드를 측정하는 데 성공했다고 밝혔다. ☞ 표면 플라즈몬 폴라리톤: 유전체와 금속의 경계면의 전자기장과 금속 표면의 자유 전자가 집단적으로 진동하는 유사 입자들이 강하게 상호작용한 결과로, 금속 표면에 형성되는 표면파(surface wave)를
2023-05-18최근 반도체 칩의 성능이 급격하게 향상됨에 따라, 보다 정확한 타이밍으로 칩 내의 다양한 회로 블록들의 동작을 동기화(synchronization)시키는 클럭(clock) 신호를 공급하는 기술이 중요해지고 있다. 우리 대학 기계공학과 김정원 교수 연구팀이 레이저를 이용해 반도체 칩 내에서 초저잡음 클럭 신호를 생성하고 분배할 수 있는 기술을 개발했다고 9일 밝혔다. 기존에는 클럭 신호의 정확성이 통상적으로 피코초(1조 분의 1초) 수준이었으나 이번에 개발된 기술을 이용하면 기존의 방식보다 월등한 펨토초(femtosecond, 10-15초, 천 조 분의 1초) 수준의 정확한 타이밍을 가지는 클럭 신호를 칩 내에서 생성하고 분배할 수 있으며, 클럭 분산 과정에서 발생하는 칩 내에서의 발열 또한 획기적으로 줄일 수 있다. 기계공학과 현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 세종캠퍼스 정하연 교수팀과의 공동연구로 이루어진 이번 논문은 국제학술지 `네이처 커뮤니케
2023-05-09