< 사진 1. 전산학부 한동수 교수(앞줄 오른쪽에서 세번째) 연구팀 단체사진 >
우리 대학 전산학부 한동수 교수 연구팀(지능형 서비스 통합 연구실)이 실내외 환경 구분 없이 정밀한 위치인식이 가능한 `실내외 통합 GPS 시스템'을 개발했다고 8일 밝혔다.
이번에 개발된 실내외 통합 GPS 시스템은 실외에서는 GPS 신호를 사용해 위치를 추정하고 실내에서는 관성센서, 기압센서, 지자기센서, 조도센서에서 얻어지는 신호를 복합적으로 사용해 위치를 인식한다. 이를 위해 연구팀은 인공지능 기법을 활용한 실내외 탐지, 건물 출입구 탐지, 건물 진입 층 탐지, 계단/엘리베이터 탐지, 층 탐지 기법 등을 개발했다. 아울러 개발된 각종 랜드마크 탐지 기법들을 보행자 항법 기법(PDR)과 연계시킨 소위 센서 퓨전 위치인식 알고리즘도 새롭게 개발했다.
지금까지는 GPS 신호가 도달하지 않는 공간에서는 무선랜 신호나 기지국 신호를 기반으로 위치를 인식하는 것이 보통이었다. 하지만 이번에 개발된 실내외 통합 GPS 시스템은 신호가 존재하지 않고 실내지도가 제공되지 않는 건물에서도 위치인식을 가능하게 하는 최초의 기술이다.
< 그림 1. 실내외 통합 GPS 위치인식 과정 모식도 >
연구팀이 개발한 알고리즘은 구글, 애플의 위치인식 서비스에서는 제공하지 않는 건물 내에서의 정확한 층 정보를 제공할 수 있다. 비전이나 지구 자기장, 무선랜 측위 방식과 달리 사전 준비 작업이 필요치 않은 장점도 있다. 전 세계 어디에서나 사용할 수 있는 범용적인 실내외 통합 GPS 시스템을 구축할 수 있는 기반이 마련됐다.
연구팀은 GPS, 와이파이, 블루투스 신호 수신 칩과 관성센서, 기압센서, 지자기센서, 조도센서 등을 탑재시킨 실내외 통합 GPS 전용 보드도 제작했다. 또한 제작된 하드웨어(HW) 보드에 개발된 센서퓨전 위치인식 알고리즘을 탑재했다. 제작된 실내외 통합 GPS 전용 하드웨어(HW) 보드의 위치인식 정확도를 대전 KAIST 본원 N1 건물에서 측정한 결과, 층 추정에 있어서는 약 95%의 정확도를, 수평 방향으로는 약 3~6미터의 정확도를 달성했다. 실내외 전환에 있어서는 약 0.3초의 전환 속도를 달성했다. 보행자 항법(PDR) 기법을 통합시켰을 때는 1미터 내외의 정확도를 달성하였다.
연구팀은 위치인식 보드가 내장된 태그를 제작하고 박물관, 과학관, 미술관 방문객들을 위한 위치기반 전시 안내 서비스에 적용할 예정이다. 개발된 실내외 통합 GPS 태그는 어린이나 노약자를 보호하는 목적으로도 활용할 수 있으며 소방관 혹은 작업장 작업자의 위치 파악에도 활용할 수 있다. 한편 지하 주차장과 같은 실내로 진입하는 차량의 위치를 추정하는 차량용 센서 퓨전 위치인식 알고리즘과 위치인식 보드도 개발하고 있다.
< 그림 2. 실내외 통합 GPS 시스템 특성 >
연구팀은 차량용 실내외 통합 GPS 위치인식 보드가 제작되면 자동차 제조사, 차량 대여 업체들과의 협력을 모색할 예정이며, 스마트폰에 탑재될 센서 퓨전 위치인식 알고리즘도 개발할 예정이다. 개발된 알고리즘이 내장된 실내외 통합 GPS 앱이 개발되면 위치인식 분야에서 다양한 사업화를 모색하는 통신사와의 협력도 가능할 것으로 기대된다.
연구팀을 이끄는 전산학부 한동수 교수는 "무선 신호가 존재하지 않고 실내지도도 주어지지 않는 건물에서 위치인식이 가능한 실내외 통합 GPS 시스템 개발은 이번이 처음이며, 그 응용 분야도 무궁무진하다. 2022년부터 개발이 시작된 한국형 GPS(KPS) 시스템, 한국형 항공위성서비스(Korea Augmentation Satellite System, KASS)와 통합되면 한국이 실내외 통합 GPS 분야에서 선도 국가로 나설 수 있으며 향후 기술 격차를 더 벌릴 수 있도록 실내외 통합 GPS 반도체 칩도 제작할 계획이다ˮ라고 말했다.
< 그림 3. 실내외 통합 GPS 보드 샘플 >
또 "개발된 실내외 통합 GPS 태그를 사용한 과학관, 박물관, 미술관 위치기반 안내 서비스는 관람객의 동선 분석에도 유용하게 활용될 수 있다. 전시물 교체를 결정할 때 요구되는 꼭 필요한 유용한 정보다. 국립중앙과학관에 우선 적용될 수 있도록 노력하겠다”라고 말했다.
한편 실내외 통합 GPS 시스템, 그리고 위치기반 관람객 동선 분석 시스템 개발은 과기정통부의 과학문화전시서비스 역량강화지원사업의 지원으로 개발됐다.
자동차와 기계 부품 등에 사용되는 강철 합금은 일반적으로 고온에서 녹이는(융해) 공정을 거쳐 제조된다. 이때 성분이 변하지 않고 그대로 녹는 현상을 ‘합치 융해(congruent melting)’라고 한다. 우리 연구진은 이처럼 고온 실험을 통해서만 가능했던 합금의 융해 특성을 인공지능(AI)으로 해결했다. 이번 연구는 고질적인 난제였던 합금이 녹을 때 서로 얼마나 잘 섞이는지를 미리 예측함으로써, 미래 합금 개발의 방향성을 제시한다는 점에서 주목받고 있다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 노스웨스턴대 크리스 울버튼(Chris Wolverton) 교수팀과 국제 공동연구를 통해, 밀도범함수이론(DFT)* 기반의 형성에너지(합금이 얼마나 안정적인지를 나타내는 값) 데이터를 활용해 합금이 녹을 때 성분이 유지되는지를 예측하는 고정확도 머신러닝 모델을 개발했다고 14일 밝혔다. *밀도범함수이론(Density Functional Theory,
2025-07-14‘음향 분리 및 분류 기술’은 드론, 공장 배관, 국경 감시 시스템 등에서 이상 음향을 조기에 탐지하거나, AR/VR 콘텐츠 제작 시 공간 음향(Spatial Audio)을 음원별로 분리해 편집할 수 있도록 하는 차세대 인공지능(AI) 핵심 기술이다. 우리 대학 전기및전자공학부 최정우 교수 연구팀이 세계 최고 권위의 음향 탐지 및 분석 대회인 ‘IEEE DCASE 챌린지 2025’에서 ‘공간 의미 기반 음향 장면 분할(Spatial Semantic Segmentation of Sound Scenes)’ 분야에서 우승을 차지했다고 11일 밝혔다. 이번 대회에서 연구팀은 전 세계 86개 참가팀과 총 6개 분야에서 경쟁 끝에 최초 참가임에도 세계 1위 성과를 거두었다. KAIST 최정우 교수 연구팀은 이동헌 박사, 권영후 석박통합과정생, 김도환 석사과정생으로 구성되었다. 연구팀이 참가한 ‘공간 의미 기
2025-07-11원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적
2025-07-02우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30