〈 백 무 현 교수 〉
우리 대학 화학과 백무현 교수 연구팀이 우리 주변에 흔한 타이타늄(Titanium) 촉매를 활용해 플라스틱, 의약품 원료로 사용하는 올레핀(olefins) 합성에 성공했다.
석유화학산업 분야 주요 소재인 올레핀은 보통 800℃ 고온으로 석유를 증기 분해(steam cracking)해 제조한다. 매우 높은 열과 에너지가 투입되고 이산화탄소 등 온실가스가 발생하는 것이 단점이다.
연구결과는 27일 국제학술지 네이처 케미스트리에 게재됐다.
기초과학연구원 분자활성 촉매반응 연구단의 부연구단장으로 재직 중인 백무현 교수는 계산화학을 통해 타이타늄을 최적의 촉매로 선택했고 탄화수소(hydrocarbon)의 수소를 선택적으로 없애는 탈수소반응을 구현했다. 이로써 기존 공정에 비해 10분의 1정도 낮은 온도(75℃)에서 올레핀을 합성했다.
올레핀은 플라스틱, 고분자 화합물, 의약품 등에 활용하는 기초 원료이다. 활용도가 커 올레핀 합성 과정은 많은 연구자들이 연구주제로 삼고 있다.
올레핀은 탄화수소가 수소를 잃으면서 탄소(C) 두 개가 이중결합(C=C)해 생성되는데 증기 분해 방식은 반응 중 탄소-탄소 결합이 끊어져 올레핀 혼합물이나 다른 탄화수소들이 합성되는 단점이 있다. 또 석유 대신 천연가스에서 올레핀을 합성하려면 온실가스가 발생해 오염과 공해 문제가 뒤따랐다.
화학자들은 석유와 천연가스 등 탄화수소 화합물을 가공하거나 분해할 때 열과 에너지를 적게 사용하고, 환경오염이 덜한 화학반응을 구현하기 위해 다양한 촉매반응을 연구했다.
탄소와 수소만으로 결합된 탄화수소는 두 분자 간 결합이 매우 강하기 때문에 결합을 끊고 반응을 유도하는 촉매 개발이 주요 과제였다. 이리듐(Iridium), 로듐(rhodium), 루테늄(ruthenium) 등 전이금속을 촉매로 적용했으나 비용이 너무 비싸 실제 산업에 활용하기는 어려웠다.
백 부단장은 비싼 전이금속 보다 수십 배 저렴한 타이타늄을 촉매로 적용했다. 백 부단장은 밀도범함수를 활용한 계산 화학을 통해 최적의 촉매 후보물질로 타이타늄을 제안했고 미국 펜실베니아대학 연구진은 약 75℃에서 탈수소반응이 성공적으로 이뤄졌음을 실험으로 확인했다.
지난해 이리듐 촉매로 메탄가스의 강력한 탄소-수소 결합을 분해한 데 이어 이번 연구에서도 계산화학으로 정확한 촉매를 예측했다. 또 탈수소반응에 이리듐 촉매를 활용할 때 탄화수소가 이성질화(isomerization) 되는 문제도 타이타늄 촉매로 해결됨을 관찰했다.
백 교수는 “이리듐은 반응성이 매우 크지만 값이 비싸고 구하기 어렵다. 반면 타이타늄은 값이 매우 저렴하고 구하기 쉽다”며 “향후 타이타늄 촉매의 반응성과 효율성을 높인다면 기존 올레핀 합성공정의 비용이 줄어들 것”이라고 말했다.
이번 연구는 미국 펜실베니아 대학의 대니얼 민디올라(Daniel J. Mindiola) 교수 그룹과 공동으로 진행됐다.
□ 그림 설명
그림1. 연구진이 제안한 타이타늄 촉매를 활용한 탈수소반응 메커니즘
그림2. 밀도범함수를 활용한 계산화학으로 본 탈수소반응 메커니즘
우리 대학 신소재공학과 조은애 교수 연구팀이 인하대학교 함형철 교수 연구팀과 공동연구를 통해 수소연료전지의 핵심 소재인 전극에 들어가는 백금의 사용량 저감에 성공하였으며, 내구성이 향상된 촉매 소재를 개발했다고 7일 밝혔다. 수소차의 동력원으로 사용되는 양성자 교환막 연료전지(proton exchange membrane fuel cell, PEMFC)는 값비싼 백금 촉매 소재를 사용한다. 따라서, 백금 사용량 저감 및 반응 중 안정적인 활성을 갖는 촉매 소재 개발이 양성자 교환막 연료전지 기술 개발에 있어 중요한 부분을 차지한다. 연료전지는 백금 촉매의 성능을 높여 백금 사용량을 줄이려는 전략으로 상대적으로 값싼 비귀금속과의 합금화를 주로 사용한다. 그러나, 일반적인 합금 촉매의 경우 비귀금속이 반응 중 녹아 나올 수 있으며, 녹아 나온 비귀금속에 의해 연료전지가 손상되는 추가 문제를 유발할 수 있다. 이를 해결하기 위한 전략으로, 녹아 나온 상태에서도 연료전지에 손상
2025-02-07수전해 셀은 물을 전기화학적으로 분해해 수소를 생산하는 기술로, 탄소 중립 시대를 위한 필수적인 에너지 변환 기술이지만 산업적 활용을 위해서는 고가의 백금 사용량이 크게 요구되는 한계가 있었다. 한국 연구진이 백금 사용량을 1/10로 줄여 수전해 셀의 경제성을 높이는데 성공했다. 이번 연구에서 측정한 수전해 셀 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 유일하게 충족시켰다고 평가받았다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 화학과 김형준 교수 연구팀과 공동연구를 통해 음이온 교환막 기반 수전해 셀의 성능과 안정성을 획기적으로 높이는 고성능 고안정성 귀금속 단일 원자 촉매를 개발했다고 31일 밝혔다. 연구팀은 귀금속 촉매의 열화 메커니즘을 역이용하는 ‘자가조립원조 귀금속 동적배치’전략을 개발했다. 이 방법은 1,000℃ 이상의 고온에서 귀금속이 자발적이고
2025-02-03세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다. 기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다. 이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한
2025-01-23수소 연료전지는 미래의 친환경 에너지 시스템으로 주목받고 있지만 귀금속인 백금이 다량 사용되고 연료전지 구동 과정에서 탄소 지지체가 부식돼 백금 입자끼리 뭉치면서 연료전지 성능이 저하되는 문제를 가지고 있다. KAIST 연구진이 개발한 수소 연료전지 촉매로 고강도 내구성 평가 이후에도 기존 상용 촉매 대비 약 62% 이상의 전류 밀도를 유지시켜 수소 연료전지 수명을 획기적으로 연장시키는데 성공했다. 우리 대학 신소재공학과 정연식 교수, 조은애 교수 공동연구팀이 수소전기차의 핵심 부품인 연료전지 장치에 활용될 수 있는 고내구성 촉매 소재를 개발했다고 4일 밝혔다. 이번에 개발된 촉매는 실제 구동 환경에서 수천 시간에 맞먹는 강도의 2만 사이클 내구성 평가를 거친 후에도 초기 성능에 가까운 수준을 유지할 만큼 높은 내구성을 갖추고 있어 기존 연료전지에서 가장 큰 걸림돌로 지적됐던 수명 문제를 해결하는 성과로 평가된다. 연구팀은 ‘3차원 자이로이드 나노구조체 기반 촉매
2024-12-04그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21