사진1. K-EYE 사진
사진2. K-EYEQ 사진
사진3. CNNP 칩 사진
우리 대학 전산학부 안성진 교수 연구팀이 세계적인 인공지능 권위자인 캐나다의 요슈아 벤지오(Yoshua Bengio) 교수와 함께 ‘KAIST-밀라(MILA) 프리프론탈 인공지능 연구센터’를 KAIST에 7월 1일부로 설립했다고 4일 밝혔다. 이 사업은 과학기술정보통신부와 한국연구재단이 지원하는 ‘2024년도 해외우수연구기관 협력허브구축사업’의 일환으로, 안성진 교수 연구팀은 2024년 7월부터 2028년 12월까지 총 27억 원의 지원을 받게 된다. 이 센터는 차세대 인공지능 기술 개발을 위한 국제공동연구의 중심지로서 역할을 하게 될 예정이다. 요슈아 벤지오 교수는 딥러닝 분야의 창시자 중 한 명으로, 현대 인공지능 연구에 지대한 영향을 미친 인물이다. 그의 연구는 현재의 딥러닝 기술을 탄생시키고 발전시키는 데 중요한 역할을 했다. KAIST 안성진 교수팀과의 이번 협력은 요슈아 벤지오 교수의 몬트리올 학습 알고리즘 연구
2024-09-04기존의 반도체 소자에서 열 발생은 피할 수 없는데, 이는 에너지 소모량을 증가시키고, 반도체의 정상적인 동작을 방해하기 때문에 문제가 되며, 이에 열 발생을 최소화하는 것이 기존 반도체 기술의 관건이었다. KAIST 연구진이 이렇게 애물단지로 여겨지던 열을 오히려 컴퓨팅에 활용하는 방법을 고안하여 화제다. 우리 대학 신소재공학과 김경민 교수 연구팀이 산화물 반도체의 열-전기 상호작용에 기반하는 열 컴퓨팅(Thermal computing) 기술 개발에 성공했다고 25일 밝혔다. 연구팀은 전기-열 상호작용이 강한 모트 전이 (Mott transition) 반도체*를 활용했으며, 이 반도체 소자에 열 저장 및 열전달 기능을 최적화해 열을 이용하는 컴퓨팅을 구현했다. 이렇게 개발된 열 컴퓨팅 기술은 기존의 CPU, GPU와 같은 디지털 프로세서보다 1,000,000(백만)분의 1 수준의 에너지만으로 경로 찾기 등과 같은 복잡한 최적화 문제를 풀 수 있었다. *모트 전이 반도체:
2024-06-25우리 연구진이 공정 비용이 낮고 초저전력 동작이 가능하여 기존의 메모리를 대체하거나 차세대 인공지능 하드웨어를 위한 뉴로모픽 컴퓨팅(Neuromorphic Computing) 구현에 사용될 메모리 소자를 개발하여 화제다. 전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다. ☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여, 이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는 메모리 소자. 기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며 소모 전력이 높은 문제점이 있었다. 최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적
2024-04-04우리 대학이 서울시 · 서울시복지재단과 'AI안부확인서비스 데이터 활용연구를 위한 업무협약'을 29일 서면 교환 방식으로 체결한다. 이번 업무협약은 서울시가 2022년 10월부터 제공해 온 인공지능을 활용한 안부 확인 서비스를 고도화하기 위해 추진된다. 안부 대상자의 심리상태와 고립 위험 신호를 탐지할 수 있는 대화형 'AI안부확인서비스'를 개발해 고립가구 돌봄서비스에 활용하는 것이 목표다. 우리 대학은 이번 연구를 위해 인공지능-사회복지-HCI(인간컴퓨터상호작용)를 아우르는 융합연구팀을 구성했다. 차미영 전산학부 교수와 최문정 과학기술정책대학원 교수 및 IBS 수리 및 계산과학 연구단 데이터사이언스 그룹 진효진 박사가 참여한다. 연구팀은 서울시가 'AI안부확인서비스'를 운영하며 축적해 온 대화 데이터를 제공받아 ▴고립 위험 대상자를 찾아낼 수 있는 지표 개발 ▴고립감 해소 및 심리적 안정을 위한 시나리오 개발과 이를 반영한 대화형 인공지능 개발 ▴고령자 및
2024-03-29우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나
2024-03-25