< (왼쪽부터) 신소재공학과 이건재 교수, 성상현 박사과정 >
우리 대학 신소재공학과 이건재 교수팀이 100 nm(나노미터) 두께의 단일 소자에서 뉴런과 시냅스를 동시에 모사하는 뉴로모픽(neuromorphic) 메모리를 개발했다고 23일 밝혔다. 뉴런은 신경계를 이루는 기본적인 단위세포를, 시냅스는 뉴런 간의 접합 부위를 말한다.
이 교수팀은 인간의 뇌처럼 뉴런과 시냅스가 유기적으로 동작하는 방식의 단일 메모리 소자를 최초로 구현했으며, 이를 통해 반도체 소자로 인간 뇌를 완전히 구현한다는 뉴로모픽 컴퓨팅 본연의 목표 달성에 근접할 수 있을 것으로 기대된다.
1,000억 개의 뉴런과 100조 개의 시냅스의 복잡한 네트워크로 구성된 인간 뇌는 그 기능과 구조가 고정된 것이 아니라 외부 환경에 따라서 유연하게 변하는 특징을 가지고 있다. 따라서 뉴로모픽 소자는 뉴런과 시냅스의 특성을 모사해 기존의 컴퓨터로는 구현할 수 없는 인간 뇌의 고도 인지 기능을 실현하는 데에 가장 큰 목적을 두고 있다.
지금까지 뉴로모픽 컴퓨팅 구현을 위해서 CMOS 집적회로와 비휘발성 메모리 등을 이용한 연구들이 진행됐으나, 기존 기술들은 뉴런과 시냅스의 기능을 분리해 모사한다는 한계점을 가지고 있었다.
인간 뇌에서 뉴런과 시냅스는 서로 유기적으로 연결돼 있으며, 서로 간의 상호작용을 통해 인지 기능이 발현된다. 이러한 뉴런과 시냅스의 기능을 인간 뇌처럼 단일 구조체에서 통합해 구현하는 것은 어려운 도전 과제였다.
< 그림 1. 뉴런과 시냅스를 동시에 모사하는 뉴로모픽 소자 >
이 교수 연구팀은 휘발성의 소자(threshold switch)로 뉴런을, 비휘발성의 상변화 메모리 소자로 시냅스를 모사해 단기·장기 기억이 공존하는 단일 뉴로모픽 소자를 개발했으며, 이를 통해 집적도 개선 및 비용 절감 효과도 얻을 수 있을 것으로 기대된다. 특히 기존 CMOS 뉴런 소자에서는 단순 신호 발산 기능만이 구현됐으나, 연구팀의 뉴런-시냅스 통합소자는 신호 발산 유형이 환경에 따라서 유연하게 적응하는 가소성(plasticity)을 구현하는 데 성공했다.
이건재 교수는 이번 연구 성과에 대해 "인간은 뉴런과 시냅스의 상호작용을 통해 기억, 학습, 인지 기능을 발현하므로 둘 모두를 통합 모사하는 것이 인공지능에 있어서 필수적인 요소ˮ라며 "개발한 단일 뉴런-시냅스 소자는 기존의 단순 이미지 학습 효과를 넘어서, 피드백 효과를 기반으로 한 번 배운 내용을 더 빨리 학습하는 재학습(retraining) 효과 구현도 성공해 인공지능뿐만 아니라 뇌를 역설계하는 연구에도 큰 도움이 될 것이다”고 언급했다.
< 그림 2. 뉴런과 시냅스 간 양적 피드백 효과와 재학습 과정 모사 >
한편 이번 연구는 삼성전자 전략산학과제와 지능형반도체 사업의 지원을 받아 수행됐으며, 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)'에 5월 19일 字 게재됐다.
인공지능과 로봇 기술의 동반 발전 속에서, 로봇이 사람처럼 효율적으로 환경을 인식하고 반응하는 기술 확보가 중요한 과제로 떠오르고 있다. 이에 한국 연구진이 별도의 복잡한 소프트웨어나 회로 없이도 생명체의 감각 신경계를 모사한 인공 감각 신경계를 새롭게 구현해 주목받고 있다. 이 기술은 에너지 소모를 최소화하면서 외부 자극에 지능적으로 반응할 수 있어, 초소형 로봇이나 로봇 의수 등 의료 및 특수 환경에서의 활용이 기대된다. 우리 대학 전기및전자공학부 최신현 석좌교수, 충남대학교 반도체융합학과 이종원 교수 공동연구팀이 생명체의 감각 신경계 기능을 모사하는 차세대 뉴로모픽 반도체 기반 인공 감각 신경계를 개발하고, 이를 통해 외부 자극에 효율적으로 대응하는 신개념 로봇 시스템을 증명했다고 15일 밝혔다. 사람을 포함한 동물은 안전하거나 익숙한 자극은 무시하고, 중요한 자극에는 선별적으로 민감하게 반응함으로써, 에너지 낭비를 방지하면서도 중요한 자극에 집중해 민첩하게 외부 변
2025-07-15‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해낼까?’ 우리 대학 연구진은 이 질문에서 출발해, 뇌가 단순히 총열량(칼로리)을 감지하는 수준을 넘어 특정 영양소, 특히 포도당을 선택적으로 인식할 수 있다는 사실을 입증했다. 이번 연구는 향후 식욕 조절 및 대사성 질환 치료 전략에 새로운 패러다임을 제시할 수 있을 것으로 기대된다. 우리 대학 생명과학과 서성배 교수 연구팀이 바이오및뇌공학과 박영균 교수팀, 생명과학과 이승희 교수팀, 뉴욕 알버트 아인슈타인 의과대학과의 협력을 통해, 배고픔 상태에서 포도당이 결핍된 동물이 장내의 포도당을 선택적으로 인식하고 선호하도록 유도하는 장-뇌 회로의 존재를 규명했다고 9일 밝혔다. 생물은 당, 단백질, 지방 등 다양한 영양소로부터 에너지를 얻는다. 기존 연구들은 장내 총열량 정보가 시상하부의 배고픔 뉴런(hunger neurons)을 억제함으로써 식욕을 조절한다는 사실을 밝혀왔으나, 특정 포도
2025-07-09기존 양자점(quantum dots)에는 카이랄 방향성, 광학적 또는 자기적 특성을 복합적으로 구현하는 것이 매우 어려운 기술이었다. KAIST 연구진이 이런 한계를 극복하고, 세계 최초로 광학적 카이랄성과 자성의 융합 특성을 동시에 갖춘 ‘카이럴 자성 양자점’을 개발하고, 이를 활용하여 사람의 뇌처럼 정보를 보고, 판단하고, 저장하며 초기화할 수 있는 기능을 단일 소자에 집약해, 고성능 AI 하드웨어의 새로운 패러다임을 제시했다. 우리 대학 신소재공학과 염지현 교수 연구팀이 빛에 의해 비대칭 반응하는 카이랄성과 자성을 동시에 갖는 특수 나노입자인 양자점(CFQD)을 세계 최초로 개발하고, 저전력 인간 뇌 구조와 작동 방식을 모방한 인공지능 뉴로모픽 소자(ChiropS)까지 성공적으로 구현했다. 신소재공학과 염지현 교수 연구팀이 개발한 카이랄 양자점을 활용한 광 시냅스 트랜지스터는 편광 구분, 멀티 파장 인식, 전기 소거 등 다양한 기능을 단일 소자에 집
2025-04-25뉴랜지스터(Neuransistor)는 ‘뉴런(Neuron) + 트랜지스터(Transistor)’의 합성어로 뇌의 뉴런 특성을 구현하는 트랜지스터라는 의미로 만들어진 새로운 용어이다. 이는 뇌 속 신경세포(뉴런)의 흥분과 억제 반응을 모방하여 시간에 따라 달라지는 정보를 스스로 처리하고 학습할 수 있는 차세대 인공지능 하드웨어의 핵심 반도체 소자다. KAIST 연구진이 뉴랜지스터의 개념을 제시하고 최초로 뉴랜지스터를 개발하는데 성공했다. 우리 대학 신소재공학과 김경민 교수 연구팀이 시간에 따라 변화하는 정보를 효과적으로 처리할 수 있는 액체 상태 기계(Liquid State Machine, 이하 LSM)*의 하드웨어 구현을 가능케 하는 뉴랜지스터 소자 개발에 성공했다. * 액체상태 기계(LSM): 생물학적 신경망의 동적 특성을 모사해, 시간에 따라 변화하는 입력 데이터를 처리하는 스파이킹 뉴럴 네트워크 모델 현재의 컴퓨터는 동영상과 같이 시간 흐름에 따
2025-04-16기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다. 우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다. 연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수
2025-01-22