〈 유 승 협 교수 〉
우리 대학 전기 및 전자공학부 유승협 교수와 성균관대 화학공학부 박남규 교수 공동 연구팀이 열을 차단하는 동시에 전기도 생산할 수 있는 반투명 태양전지 기술을 개발했다.
이는 다층 금속 박막 기반의 투명전극을 이용한 기술로써 가시광선은 투과하고 적외선(열선)은 선택적으로 반사한다. 동시에 전기도 생산하기 때문에 에너지를 효율적으로 사용하면서 낮은 실내 온도를 유지할 수 있다. 자동차 선팅이나 건물 창호 등에 다방면으로 이용 가능할 것으로 기대된다.
이번 연구 성과는 에너지 분야 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 20일자 표지 논문으로 선정됐다.(논문명: Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality)
태양전지는 지붕 위에 설치하는 청색의 사각 패널 뿐 아니라 건물이나 차량 유리창에 적용할 수 있는 반투명 모양으로도 발전될 수 있다.
하지만 빛을 흡수해 전기를 생산하는 태양전지의 속성 상 빛을 투과시키는 태양전지의 반투명한 특성은 효율을 감소시킬 수밖에 없다. 또한 기존의 상용화된 결정질 실리콘 기반의 태양전지는 반투명하게 제작이 어렵다는 한계를 갖는다.
연구팀은 문제 해결을 위해 차세대 태양전지 재료로 주목받는 유, 무기 복합물로 이뤄진 페로브스카이트를 광전변환 재료로 이용했다.
그리고 양면에 투명 전극을 사용해 반투명한 태양전지를 구현했다. 이 때 한쪽 면의 투명 전극은 연구팀이 수년 간 전자소자에 적용해온 ‘절연층-금속-절연층’ 구조의 금속 기반 다층 박막을 사용했다.
금속은 통상적으로 빛이 투과되기 어렵다. 하지만 연구팀은 수십 나노미터 두께의 얇은 박막으로 제작한 뒤 그 위에 반사를 줄이는 굴절률이 높은 절연층을 적층하는 방법으로 투명한 전극을 구현했다.
또한 투명 전극 각 층의 두께를 세밀하게 조절해 사람의 눈에 보이는 가시광선 대역의 빛은 투과시키고, 눈에 보이지 않는 대역의 빛은 반사되도록 설계했다. 이를 통해 차량용 선팅 필름과 비슷한 수준인 7.4% 평균 가시광선 투과율을 갖는 동시에 13.3%의 광전변환효율을 보이는 반투명 태양전지 제작에 성공했다.
연구팀은 적외선 반사를 최대화해 태양광의 열선을 효과적으로 반사시키는 기능을 더했다. 선팅 필름 제품의 태양열차단 성능은 총태양열에너지차단율(Total Solar Energy Rejection : TSER) 지수로 평가되는데 연구팀의 반투명 태양전지는 고가 선팅 필름 제품과 동등한 수준인 89.6%의 우수한 TSER 값을 보였다.
다수의 선팅 필름 제품들이 흡수를 통해 태양빛을 차단하기 때문에 태양빛에 노출 시 필름 자체의 온도가 올라간다. 반면 연구팀의 태양전지는 반사를 통해 열을 차단해 빛에 노출돼도 온도가 거의 올라가지 않아 태양전지의 안정성 향상 측면에서도 유리할 것으로 기대된다.
유 교수는 “열 차단 기능성 반투명 태양전지는 추가적 광학 설계를 통해 색 조절도 가능하고 궁극적으로는 필름형으로도 제작 가능해 기존 차량 및 건물의 유리창을 멋있고 스마트하게 업그레이드할 수 있을 것이다”며 “태양전지가 친환경 에너지를 생산하는 것에서 더 나아가 새로운 부가가치를 갖출 때 기존보다 더 큰 시장을 개척할 수 있을 것이다”고 말했다.
김호연, 하재원 박사과정 학생과 성균관대 김희선 학생이 공동으로 참여한 이번 연구는 KAIST 기후변화연구허브 사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 저널의 표지논문 그림
그림2. 태양전지 사진
그림3. 열화상 사진
그림4. 모식도
탈모는 전 세계적으로 수억 명이 겪고 있는 문제로 심리적·사회적 영향을 크게 미치고 있다. KAIST 연구진이 천연 폴리페놀(polyphenol)의 일종인 탄닌산이 탈모 예방에 기여할 가능성에 주목하고 연구를 통해 탄닌산이 단순한 코팅제가 아니라, 탈모를 완화시키는 ‘접착 중재자(adhesion mediator)’ 역할을 한다는 점을 밝혀냈다. 우리 대학 화학과 이해신 교수 연구팀이 탄닌산 기반 코팅 기술을 활용해 탈모 완화 기능성 성분을 서서히 방출하는 새로운 탈모 예방 기술을 개발했다고 6일 밝혔다. 탈모에는 안드로겐 탈모증(androgenetic alopecia, AGA) 및 휴지기 탈모(telogen effluvium, TE)가 있는데 유전적, 호르몬적, 환경적 요인이 복합적으로 작용하며, 현재까지도 효과적이면서 부작용이 적은 치료법이 부족한 실정이다. 대표적인 탈모 치료제인 미녹시딜(minoxidil)과 피나스테라이드(fina
2025-02-06조광현 교수 연구팀은 암세포를 죽이지 않고 그 상태만을 변환시켜 정상 세포와 유사한 상태로 되돌리는 암 가역 치료 원천기술을 개발한 바 있다. 이번에는 정상세포가 암세포로 변화되는 순간의 유전자 네트워크에 암 가역화를 유도할 수 있는 분자스위치가 숨겨져 있음을 최초로 밝히는데 성공하였다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 정상세포에서 암세포로 변화하는 순간의 임계 전이(臨界轉移, critical transition) 현상을 포착하고 이를 분석해 암세포를 다시 정상세포로 되돌릴 수 있는 분자스위치를 발굴하는 기술 개발에 성공했다고 5일 밝혔다. 임계 전이란 물이 섭씨 100도에서 증기로 변하는 것처럼 특정 시점에 갑작스러운 상태변화가 일어나는 현상을 말한다. 정상세포가 유전적, 후성유전적 변화의 축적으로 인해 특정 시점에 암세포로 변화되는 과정에도 이러한 임계 전이 현상이 나타난다. 연구팀은 암 발생 과정에서 정상세포가 암세포로 전환되기 직전, 정상세포와
2025-02-05홀추력기는 스페이스X의 스타링크(Starlink) 군집위성이나 NASA의 사이키(Psyche) 소행성 탐사선 등과 같은 여러 고난이도 우주 임무에 활용되는, 플라즈마*를 이용한 고효율 추진 장치로, 핵심적인 우주기술 중 하나다. KAIST 연구진이 인공지능 기법을 사용해 개발한 큐브위성용 홀추력기를 올해 11월에 예정된 누리호 4차 발사에서 큐브위성인 K-HERO에 탑재돼 우주에서 성능 검증을 진행할 예정이라고 밝혔다. *플라즈마(plasma)는 기체가 높은 에너지로 가열되어 전하를 띄는 이온과 전자로 분리된 물질의 네 가지 상태 중 하나로 우주 전기추진 뿐만 아니라 반도체 및 디스플레이 제조공정과 살균장치 등에 널리 활용되고 있다. 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 인공위성이나 우주탐사선의 엔진인 홀 전기 추력기(홀추력기, Hall thruster)의 추력 성능을 높은 정확도로 예측할 수 있는 인공지능 기법을 개발했다고 3일 밝혔다. 홀추력기는 연비가
2025-02-03수전해 셀은 물을 전기화학적으로 분해해 수소를 생산하는 기술로, 탄소 중립 시대를 위한 필수적인 에너지 변환 기술이지만 산업적 활용을 위해서는 고가의 백금 사용량이 크게 요구되는 한계가 있었다. 한국 연구진이 백금 사용량을 1/10로 줄여 수전해 셀의 경제성을 높이는데 성공했다. 이번 연구에서 측정한 수전해 셀 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 유일하게 충족시켰다고 평가받았다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 화학과 김형준 교수 연구팀과 공동연구를 통해 음이온 교환막 기반 수전해 셀의 성능과 안정성을 획기적으로 높이는 고성능 고안정성 귀금속 단일 원자 촉매를 개발했다고 31일 밝혔다. 연구팀은 귀금속 촉매의 열화 메커니즘을 역이용하는 ‘자가조립원조 귀금속 동적배치’전략을 개발했다. 이 방법은 1,000℃ 이상의 고온에서 귀금속이 자발적이고
2025-02-03세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다. 기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다. 이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한
2025-01-23