< 강정구 교수, 김용훈 교수 >
우리 대학 EEWS 대학원 강정구, 김용훈 교수 공동 연구팀이 빠른 속도의 충, 방전이 가능한 동시에 1만 번 이상의 작동에도 용량 손실이 없는 리튬 이온 배터리 음극 소재를 개발했다.
이번 연구는 3차원 그물 형상의 그래핀과 6나노미터 크기의 이산화티타늄 나노입자로 구성된 복합 구조체를 간편한 공정으로 제조하는 기술이다.
이를 통해 탄소계열 물질 위주의 기존 전극이 갖고 있던 고출력 성능이 제한되는 문제를 개선해 고성능의 배터리 전극을 구현했다. 향후 전기자동차, 휴대용 기기 등 높은 출력과 긴 수명을 요구하는 분야에 응용 가능할 것으로 기대된다.
이규헌 박사과정, 이정우, 최지일 박사가 주도한 이번 연구 결과는 국제 과학 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 지난 5월 18일자 온라인 판에 게재됐다.
현재 음극 배터리 물질로는 그래핀이 가장 많이 사용된다. 이 그래핀을 쉽게 만드는 방법은 용액 상에서 흑연을 분리시키는 방법인데 이 과정에서 결함 및 표면의 불순물이 발생해 전기 전도성을 높이는데 방해가 된다.
연구팀은 문제 해결을 위해 화학기상증착법을 이용해 기존의 평평한 형태가 아닌 결함이 적고 물성이 우수한 3차원 그물 형상의 그래핀을 제조했다. 그 위에 메조 기공이 형성된 이산화티타늄 나노입자 박막을 입혀 복합 구조체를 구현했다.
이 기술로 일반적인 전극 구성물질인 유기 접착제와 전도성 재료를 사용하지 않음으로써 전극 제조 공정을 간소화했고 전기 전도성을 높였다.
또한 3차원 그물 형상의 그래핀과 화학적으로 안정된 이산화티타늄 나노입자가 형성하는 다양한 크기의 기공들이 전해질의 접근성을 높이는 역할을 한다. 이를 통해 이온들의 접근을 촉진시키고 원활한 전자의 이동이 가능하게 한다.
이 기술은 크기가 작은 나노 입자를 사용하기 때문에 표면부터 중심까지의 거리가 짧다. 따라서 짧은 시간 내에 결정 전체에 리튬을 삽입할 수 있어 빠른 충, 방전 속도에서도 효율적인 에너지 저장이 가능하다.
연구팀은 1분 이내에 130mAh/g의 용량을 완전히 충, 방전하는데 성공했고, 이 과정에서 용량 손실 없이 1만 번 이상 작동함을 확인했다.
연구팀은 “재료의 물성을 극대화시킬 수 있는 구조적 설계를 통해 기존 이차전지의 문제점을 해결하고 성능을 효과적으로 높이는 방법을 제시했다”고 밝혔다.
강 교수는 “재료 물리학 측면에서 가치가 높은 연구 결과이다”며 “구조적 측면에서도 향후 여러 에너지 저장장치 등의 분야에 활용 가능성이 클 것이다”고 말했다.
이 연구는 미래창조과학부의 글로벌프론티어사업, 한국연구재단의 도약사업과 KISTI 슈퍼컴퓨팅의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 그물 형상의 그래핀위에 증착된 메조기공을 형성하는 이산화 티타늄 박막 복합 구조체의 모식도
그림2. 리튬이 삽입된 구조분석
그림3. 바인더 없이 제조된 고출력고수명 특성
우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다. 동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다. 최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다. 김교수
2022-12-05우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다. 코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다. 특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를
2022-11-03우리 대학 물리학과 조성재 교수 연구팀이 기존 흔히 쓰이는 쇼트키 다이오드(Schottky diode)가 갖는 열적 거동의 한계를 뛰어넘는 저전력 정류 소자를 세계 최초로 개발하는 데 성공했다고 25일 밝혔다. 조 교수 연구팀은 단층 흑연, 즉, 그래핀(graphene)이 가지는 선형적 분산 관계의 전자 띠 구조 (linear dispersion band structure)를 이용해 열적 거동 한계(thermionic limit)를 극복한 다이오드를 최초로 구현하는 데 성공했다. 다이오드 전극으로 기존 다이오드에서 활용되었던 금속을 사용하는 대신, 그래핀을 활용함으로써 기존 다이오드의 이상지수 (ideality factor)의 한계를 뛰어넘는 초 이상적(super-ideal) 저전력 정류 소자를 개발하는 데 성공할 수 있었다. 물리학과 조성재 교수 연구실의 명규호 박사, 신원길 박사, 성경환 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케
2022-08-25우리 대학 생명과학과 전상용, 화학과 이희승 교수 공동연구팀이 인공탄수화물(artificial glycopolymer) 라이브러리 플랫폼을 이용해 항암치료용 나노의약(nanomedicine) 개발에 성공했다고 12일 밝혔다. 세포막을 둘러싸고 있는 다양한 형태의 당 사슬 집합체를 글라이코칼릭스(glycocalyx)라고 한다. 특히, 암세포 및 암종에 따라 특이적인 글라이코칼릭스는 여러 가지 당에 대해 다른 결합력을 가진다. 이에 착안해 연구팀은 자연에 가장 많이 존재하는 다섯 가지의 당들을 조합해 31가지의 인공탄수화물 후보군들을 합성한 후 최종적으로 30나노미터 크기의 인공탄수화물 기반 나노입자(glyconanoparticle) 라이브러리를 구축했다. 연구팀은 구축된 인공탄수화물 나노입자 라이브러리 스크리닝을 통해 표적 하고자 하는 암세포에 특이적으로 결합하는 나노입자 후보군을 선별했다. 선별된 인공탄수화물 나노입자 후보군을 암 동물모델에서 표적능 및 치료효능을 평가함으
2022-07-12우리 대학 신소재공학과 박찬범 교수 연구팀이 저주파 자기장 반응성 나노입자를 개발하는 데 성공했다고 16일 밝혔다. 연구팀은 이를 이용해 알츠하이머질환을 유발하는 베타-아밀로이드 펩타이드(아미노산 화합물) 응집체를 자기장으로 분해할 수 있다고 밝혔다. 신소재공학과 장진형 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지 `사이언스 어드밴시스(Science Advances)' 5월 13일 字에 게재됐다. (논문명: Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates) 자기 전기(Magnetoelectric) 소재는 자성과 전기성이 결합한 물성을 가지며 스핀트로닉스(Spintronics) 소자, 트랜스듀서(Transducer) 등 다양한 전자기기를 구성하는 핵심 물질이다. 그러나 자기 전기 소재는 원자 내 전자의 회전과 궤도 운동을 방해하는 양성자의 정전기적 상호작용(스핀-오빗 상호작용)으로 인해 성능
2022-05-16