
< 건설및환경공학과 한종인 교수 >
발전소, 산업 시설 등에서 배출되는 배기가스 내 주요 대기오염 물질인 일산화질소(NO)로부터 암모니아를 생산하는 기술이 국내 연구진에 의해 개발됐다. 대기 중에서 초미세먼지를 유발하는 골칫거리인 일산화질소를 사용해 최근 수소 저장체로 주목받는 암모니아를 생산한 것이다.
우리 대학 건설및환경공학과 한종인 교수 연구팀이 UNIST(총장 이용훈) 에너지화학공학과 권영국 교수팀, 한국화학연구원(원장 이미혜) 환경자원연구센터 김동연 박사와 함께 일산화질소로부터 암모니아를 생산하는 고효율 전기화학 시스템을 개발했다고 23일 밝혔다. 개발된 시스템은 비싼 귀금속 촉매 대신 값싼 철 촉매를 이용해 상온 및 상압 조건에서 세계 최고 수준의 전기화학적 암모니아 생산 속도를 기록했다.
일산화질소는 발전소, 산업용 보일러, 제철소 등 연소시설에서 배출되는 질소산화물(NOx)의 대부분(95% 이상)을 차지하고 있는 유해 가스로, 호흡기 질환을 유발할 뿐만 아니라 산성비 및 대기 중 오존을 생성해 배출량이 엄격히 규제되고 있다. 현재 대부분의 처리 기술은 일산화질소의 단순 제거에만 초점을 맞추고 있지만 한 교수팀은 버려지는 일산화질소의 가치에 주목했다. 일산화질소의 높은 반응성을 이용해 적은 에너지만으로 유용 자원인 암모니아 생산의 가능성을 본 것이다.
연구팀은 물에 잘 녹지 않는 일산화질소의 한계를 극복하기 위해 기존의철-킬레이트를 포함한 일산화질소 흡수제를 사용하는 방식 대신 기체를 직접적으로 전극에 주입하는 기체 확산 전극을 사용해 물질전달 속도를 획기적으로 늘렸다. 이로써 공정에 소모되는 화학약품 비용을 줄이고 전기화학 셀 운전 시 발생하는 폐수 처리를 간편화했다.
나노 크기의 철 촉매를 전극에 도포해 부반응을 억제하고 암모니아에 대한 생성물의 선택도를 확보했으며, 전기화학적 암모니아 생산 성능을 결정하는 중요한 지표인 암모니아 생산 속도는 1,236μmolcm-2h-1를 기록했다. 이는 기존의 질소 기체(N2)를 활용한 전기화학적 암모니아 생산 속도 범위인 10μmolcm-2h-1을 100배 이상 넘어선 수준이다.

< 그림 1. 일산화질소를 암모니아로 업사이클링하는 과정을 보여주는 모식도 >
이러한 접근법은 대부분의 전기화학 반응에서 100%의 순수한 원료 기체를 필요로 하는 것과 달리 사용되는 일산화질소 가스의 농도를 1~10%까지 낮출 수 있어 해당 기술의 현장 적용성을 높일 수 있을 것으로 기대된다.
또한 기존의 암모니아 생산 공정인 하버-보쉬법이 섭씨 400도, 200기압 이상의 고에너지 조건을 요구하는 데 반해, 연구팀이 개발한 전기화학 시스템은 상온 및 상압 조건에서 암모니아 생산이 가능해 공정 설비와 비용 부담을 크게 줄일 수 있을 전망이다.
이번 연구를 주도적으로 진행한 한 교수 연구팀의 천선정 박사과정 학생은 "최근 대기오염, 탄소 중립 등의 이슈가 꾸준히 확산하는 가운데 지속할 수 있는 기술 개발에 대한 중요성이 커지고 있다ˮ며 "대기오염의 원인을 효과적으로 제거하는 동시에 탄소배출이 없는 암모니아 연료를 생산해 새로운 관점으로 환경문제를 해결하고자 했다ˮ고 말했다.

< 그림 2. 연구결과가 게재된 저널 속표지 >
우리 대학 천선정 박사과정, 창원대학교 김원준 교수가 공동 제1 저자로 참여한 이번 연구성과는 저명 국제 학술지인 `ACS 에너지 레터스(Energy Letters)'에 3월 11일 자로 출판됐으며, 속표지논문으로 선정됐다. (논문명: Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode).
한편 이번 연구는 한국에너지기술평가원, 한국연구재단 등의 지원을 받아 수행됐다.
우리 대학 생명화학공학과 최민기 교수가 과학기술정보통신부와 한국연구재단이 공동 주관하는 ‘이달의 과학기술인상’을 수상한다. 이번 시상은 ‘평화와 발전을 위한 세계과학의 날(11월 10일)’을 기념해 진행된다. 이달의 과학기술인상은 최근 3년간 독창적인 연구 성과를 창출해 과학기술 발전에 공헌한 연구개발자를 매달 1명씩 선정해 과기정통부 장관상과 상금 1,000만원을 수여하는 상이다. 최민기 교수는 친환경 암모니아 합성을 위한 고성능 촉매를 개발해 탄소중립과 수소 경제 전환을 위한 핵심 기술을 마련한 공로를 인정받았다. 암모니아는 비료와 의약품 등 필수 산업 원료일 뿐 아니라 액화가 쉽고 수소 저장 밀도가 높아 재생에너지 기반 수소를 저장·운송할 수 있는 차세대 에너지 매개체로 주목받고 있다. 그러나 현재 상용화된 ‘하버-보슈 공정’은 500℃ 이상, 100기압 이상의 고온·고압이 필요해
2025-11-05프라이팬 코팅제와 반도체 공정 등에 쓰이는 ‘과불화합물(PFAS)’은 자연에서 거의 분해되지 않아 ‘영원한 화학물질’로 불리며, 전 세계 수돗물과 하천을 오염시켜 장기적인 인체 건강 위협 요인으로 지목되어 왔다. 이에 우리 대학과 국제 공동연구진이 PFAS를 기존보다 1,000배 빠르게 제거할 수 있는 기술을 개발하는 데 성공했다. 우리 대학은 건설및환경공학과 강석태 교수 연구팀은 부경대 김건한 교수, 미국 라이스대 마이클 S. 웡(Michael S. Wong) 교수 연구팀, 옥스퍼드대, 버클리국립연구소, 네바다대와 함께, 기존 정수용 소재보다 최대 1,000배 빠르고 효율적으로 물속 PFAS를 흡착·제거할 수 있는 새로운 기술을 개발했다고 30일 밝혔다. 과불화합물(PFAS)은 탄소(C)와 플루오르(F)의 결합으로 이루어진 화학물질의 집합물질로, 절연성과 내열성이 뛰어나 프라이팬 코팅제, 방수 의류, 윤활유, 반도체 공
2025-10-30이산화탄소를 배출하지 않는 그린수소(Green Hydrogen) 생산의 핵심 기술인 고체산화물 전해전지((Solid Oxide Electrolysis Cell, SOEC)는 세라믹 분말을 고온에서 굳히는 ‘소결’ 과정이 필요하다. 우리 대학 연구진은 이 과정을 6시간에서 10분으로 단축하고 온도도 1,400℃에서 1,200℃로 낮추는 데 성공했다. 이번 기술은 전지 제조의 에너지와 시간을 크게 줄여, 친환경 수소 시대를 앞당길 혁신으로 평가받고 있다. 우리 대학은 기계공학과 이강택 교수 연구팀이 단 10분 만에 그린수소의 고성능 전해전지를 완성할 수 있는 초고속 제조 기술을 개발했다고 25일 밝혔다. 이번 기술의 핵심인 ‘소결’ 은 전지를 이루는 세라믹 가루를 고온에서 구워 단단히 결합시키는 과정이다. 이 과정이 제대로 이루어져야 전지가 가스를 새지 않고(수소와 산소가 섞이면 폭발 위험), 산소 이온이 손실 없이 이동하며, 전극과 전
2025-10-28우리 대학·국제 연구진이 전통적으로 기업이 환경 규제가 느슨한 국가로 생산 거점을 이전한다는 가설‘오염 피난처(pollution haven)’를 뒤집고 기업이 이제는 ‘녹색 피난처(green haven)’를 찾아간다는 새로운 전략을 제시하여 주목을 받고 있다. 우리 대학은 기술경영학부 이나래 교수 연구팀이 미국 조지타운대 헤더 베리(Heather Berry)·재스미나 쇼빈(Jasmina Chauvin) 교수, 텍사스대 랜스 청(Lance Cheng) 교수와의 국제 공동연구를 통해 ‘환경 규제가 엄격한 국가일수록 전기차 등 녹색 제품의 경쟁력이 높아진다’는 사실을 밝혀냈다고 17일 밝혔다. ‘녹색제품’은 환경을 덜 오염시키는 친환경 제품으로 전기를 적게 쓰는 에너지 효율 높은 가전제품, 오염을 줄이는 친환경 자동차(전기차, 하이브리드차) 등을 말한다. 오랫동안 다국적
2025-10-17우리 대학은 모빌리티 연구소에서 23일 충남 내포지식산업센터에서 ‘2025 기술시연회’를 열고 주요 연구성과의 산업 현장 확산 사례를 공개한다고 23일 밝혔다. 이번 행사는 KAIST가 축적해 온 모빌리티 연구성과를 기업과 협력을 통해 상용화로 이어가는 과정을 소개하기 위해 마련됐다. KAIST 모빌리티 연구소는 우리 사회의 이동 문제 해결을 목표로, 자율주행, 도심항공교통(UAM/UAV), 친환경 이동기술 뿐 아니라 인공지능(AI)과 에너지 등 다양한 기술 분야에서 산학협력 연구를 수행하고 있다. 이번 시연회는 KAIST 연구를 충청남도의 위탁 사업과 연계해 추진된 결과물로, 연구 성과가 지역 산업과 연결되는 실질적인 모습을 보여줬다. 시연회에서는 교원 창업기업인 ㈜퓨처이브이(대표: 김경수), ㈜도착(대표: 김인희)과 동문 창업기업 ㈜노타(대표: 채명수)를 비롯한 협력 기업과 함께 상용화 단계에 진입한 성과가 발표됐다. 공개될 6개 핵심 기술은 △이동형
2025-09-24