< (왼쪽부터) 물리학과 이경진, 김세권 교수 >
우리 대학 물리학과 이경진 교수, 김세권 교수 연구팀이 스핀 기반 차세대 반도체 기술(스핀트로닉스)의 최신 연구 동향 및 미래 발전 전략을 정리한 `*준강자성체 기반 스핀트로닉스' 리뷰 논문을 물리 및 재료 분야의 세계적인 학술지 `네이처 머터리얼스 (Nature Materials)' 2022년 1월호에 표지논문으로 게재했다고 6일 밝혔다.
※ 준강자성체: 반강자성체와 같이 서로 이웃하는 자성 이온이 반대 방향으로 정렬되지만, 서로 자성의 크기가 달라서 물질 전체적으로는 자발적인 자성이 남아있는 물체
스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 스핀트로닉스 장치의 핵심 구성 요소는 자성체이기 때문에, 스핀 기반의 초고속 초고집적 정보처리를 구현하기 위해서는 최적의 자성 물질을 규명하는 것이 필수적이다.
지난 수십 년간 스핀트로닉스에서 주로 사용돼왔던 강자성체는 스핀 동역학 속도가 기존 정보 처리 기술의 수준과 유사한 기가헤르츠(GHz) 수준에 머물러 정보 처리 속도 향상에 어려움을 겪고 있었다. 또한, 강자성체가 생성하는 강력한 주위 자기장으로 인해 강자성체 기반 장치들이 서로 강하게 간섭해, 스핀 장치의 집적률을 증가시키는 데도 어려움이 있었다.
물리학과 이경진 교수와 김세권 교수는 지난 수년간의 연구를 통해 새로운 자성체인 준강자성체를 이용하면 강자성체가 갖는 문제점들을 해결해 초고속 초고집적 스핀 기반 정보 처리 장치를 개발할 수 있음을 밝혀왔고, 이를 기반으로 이번 리뷰 논문을 게재했다.
< 그림 1. 준강자성체의 특성을 보여주는 모식도 >
과거 2017년 연구팀은 준강자성체의 스핀 동역학 속도가 기존 정보 처리 기술보다 약 천배 빠른 테라헤르츠(THz) 수준이라는 점을 주목하고, 이를 이용해 스핀 메모리로 활용되는 자구벽을 강자성체보다 월등히 빠른 속도로 구동할 수 있음을 보여 네이처 머터리얼스에 논문을 게재했다. 또한, 2018년 이경진 교수는 반강자성체를 이용하면 스핀 양자 정보의 장거리 전송이 가능함을 밝혀 네이처 머터리얼스에 보고했다. 수년간에 걸친 꾸준한 연구성과로 인해 준강자성체 기반의 초고속 초고집적 스핀트로닉스에 대한 관심이 고조돼, 현재 세계적으로 관련 연구가 활발히 진행중이다.
최신 연구 동향 정리와 더불어, 연구팀은 준강자성체 기반 스핀트로닉스의 미래 발전 방향도 제시했다. 준강자성체 기반의 초고속 자기광학 장치 개발, 준강자성체가 갖는 독특한 스핀파 성질을 이용한 파동/양자 정보처리 장치 개발, 그리고 준강자성체를 이용한 뇌 모사 컴퓨팅 개발 등이 기대된다. 또한, 새로 개발된 준강자성체는 기존의 자성체와 근본적으로 다른 흥미로운 물리현상을 보일 것으로 기대돼 준강자성체 기반의 근본 자성 연구에 대한 발전 방향도 제시했다.
< 그림 2. 논문 표지 이미지 >
이경진 교수는 "이번 리뷰논문은 그동안 강자성체에만 집중돼왔던 스핀트로닉스 연구를 준강자성체로 확장시키는 데 중요한 이정표가 될 것ˮ이라고 기대감을 내비쳤다.
이번 연구는 이경진 교수, 김세권 교수, 그리고 미국 MIT Geoffrey Beach 교수, 일본 교토대학 Teruo Ono 교수, 네덜란드 Radboud 대학 Theo Rasing, 싱가포르국립대 양현수 교수의 공동 연구로 진행되었으며, 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행됐다.
우리 대학 신소재공학과 박병국 교수팀이 물리학과 김갑진 교수 연구팀 및 현대자동차와 공동연구를 통해 자성메모리(Magnetic random-access memory, MRAM)를 기반으로 사람의 지문과 같이 매번 다른 패턴을 갖는 하드웨어 보안인증 원천 기술을 개발하는 데 성공했다고 30일 밝혔다. 박병국 교수 연구팀은 반강자성체-하부강자성체-비자성체-상부강자성체 다층박막 구조에서 무자기장(field-free) 스핀-궤도 토크(spin-orbit torque, SOT)로 동작하는 MRAM 소자의 스위칭 극성을 무작위적으로 분포시켜 물리적 복제 불가능성(physical unclonable function, 이하 PUF)을 지닌 보안소자를 개발하는 것이 가능함을 입증했다. 이 기술은 고온 및 고자기장 등의 환경에서도 높은 동작 신뢰도 및 무작위성을 유지하면서 작동 가능해 사물인터넷(IoT)을 비롯한 다양한 보안시스템에 응용될 수 있을 것으로 기대된다. PUF를 이용한 하드웨어
2022-12-02우리 대학 물리학과 이경진 교수가 최근 미국 물리학회(American Physical Society, APS) 2022년도 석학회원(Fellow)으로 선정됐다고 밝혔다. 석학회원은 미국 물리학회 전체 회원 (5만3000여명) 중 탁월한 학술 업적을 이룬 0.5% 이내의 석학급 회원들에게 주어진다. 2020년 우리 대학 석좌교수로 선정된 이 교수는 고체물리 스핀트로닉스 이론 분야에서 240여 편의 SCI 학술지 논문게재, 100여 회의 국내외 학회 초청 강연을 수행했다. 특히 전류에 의한 자화거동 원리를 규명하고 이를 산업적으로 응용하는데 이바지한 업적으로 석학회원으로 선정됐다. 국내 반도체기업에 의해 양산 중인 자성메모리(MRAM)의 핵심 구동원리인 스핀전류의 생성과 이에 의한 스핀토크의 원리를 규명하는 분야에 기여한이경진 교수는 이번 선정에 대해 “오랫동안 한 분야 연구에 집중해온 연구자로서 학문적 성취를 국제적으로 인정받았다는 점에서 개인적으로 영광으로 생각
2022-10-31우리 대학 화학과 윤동기 교수 연구팀이 카이랄(비대칭성) 액정 물질의 자발적 조립으로 위상학적 솔리톤의 형성을 규칙적으로 대면적에서 제어하고 형성과정을 실시간으로 관찰하는 데 성공했다고 11일 밝혔다. 솔리톤은 특정한 파동이 주변과 상호작용을 통해 사라지지 않고 계속 유지하는 현상을 말한다. 특히 파동이 멀리까지 전달될 때도 그 고유의 정보를 잃지 않고 끝까지 원하는 지점까지 도달하는 특성을 갖는다. 따라서, 최근 해킹에 자유로울 수 없는 디지털 사회에서 솔리톤은 고유의 높은 안정성으로 인해 미래 통신의 핵심이 되리란 기대가 크다. 더 나아가 유기 액정 분자를 이용해 만들어진 위상학적 솔리톤은 스핀(spin)이라는 특별한 방향성을 갖고 있기에 차세대 복제 방지 장치 및 메모리 소자로 이용될 수 있을 것으로 기대된다. 윤 교수팀은 특별히 이번 연구를 통해 지금까지는 상온과 같은 온화한 조건에서 실시간으로 관찰할 수 없었던 위상학적 솔리톤의 형성과정을 밝혔다. 이는 공기기둥으
2022-07-11우리 대학 물리학과 김갑진 교수, 김세권 교수, 김창수 박사, 이수길 박사 연구팀이 우리 대학 신소재공학과 박병국 교수, 육종민 교수 연구팀 및 한국표준과학연구원(KRISS, 원장 박현민) 양자기술연구소 양자스핀팀과 함께 협업 연구하여 1960년대 이론으로만 소개됐던 왼손 방향으로 회전하는 스핀파를 세계최초로 증명했다. 이로써 스핀을 이용한 차세대 소자개발에 새로운 지평선이 열릴 것으로 전망된다. 공동연구팀은 전이금속 코발트(Co)와 희토류 가돌리늄(Gd)이 일정 비율로 혼합된 CoGd 준강자성체*에서 왼손 방향의 세차운동**을 하는 스핀파를 측정하고 이에 기반한 물리 현상들을 새롭게 밝혀냈다. *준강자성체(ferrimagnet): 서로 다른 크기의 반평행한 자화들로 이루어진 자성체 **세차운동(precession): 회전하는 천체나 물체의 회전축 자체가 도는 형태의 운동이나 그 현상 스핀(spin)과 일렉트로닉스(electronics)의 합성어인 스핀트로닉스 기술은
2020-06-30우리 대학 물리학과 조성재 교수 연구팀이 그래핀으로 자기장, 자성체 없이 스핀 전류를 생성, 검출하는 실험에 성공해 차세대 그래핀 스핀 트랜지스터 개발의 돌파구를 마련했다. 차세대 신소재로 주목받는 그래핀은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)로서 전기전도성, 탄성, 안정성이 높아 ‘꿈의 나노 물질’이라고 불린다. 이 그래핀은 전자의 스핀 확산 거리가 길어, 전자스핀을 정보화하는 분야인 스핀트로닉스 응용에 큰 기대를 받아왔다. 하지만 그래핀은 전자의 스핀과 전자의 궤도가 상호작용하는 스핀-궤도 결합 에너지가 매우 약하다는 이유로 스핀 전류를 직접 생성하거나 검출할 수 없다는 한계가 있었다. 조성재 교수 연구팀은 그래핀에 스핀-궤도 결합이 매우 큰 전이금속이자 디칼코게나이드 물질인 2H-TaS2를 접합시켜서 그 인접효과로 그래핀의 스핀-궤도 결합을 100배 이상 증가시키는 데 성공했고 이어 ‘라쉬바 효과&rsqu
2020-05-18