
< 신경과학 인공지능 융합연구센터장 이상완 교수 >
우리 대학 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제를 해결하는 원리를 풀어내는 데 성공했다고 5일 밝혔다.
이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 우리 대학 정재승 교수가 참여한 이번 연구는 `강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성 (underfitting-overfitting risk) 또는 편향-분산 상충 문제(bias-variance tradeoff)라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결), 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.
놀랍게도 인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리되는 `예측 오차'의 하한선(prediction error lower bound)이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: `이렇게 풀면 90점까지는 받을 수 있어'), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: `이렇게 풀면 기껏해야 70점이니 다르게 풀어보자')을 통해 과소적합-과적합의 위험을 최소화하게 된다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(`뉴런(Neuron)' 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(`PLOS Biology' 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(`네이처 커뮤니케이션즈(Nature Communications)' 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 `전두엽 메타 학습 이론'을 정립한 바 있다(`사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.

< 그림 1. 인간의 유동적 문제해결 방식을 모사하는 메타 강화학습 모델 그림 >
연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나ˮ라고 말했다. 연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ라며 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단의 지원을 받아 수행됐다.
우리 대학은 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 ‘루닛 컨소시움’ 주요 참여기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 14일 밝혔다. 이번 사업을 통해 KAIST는 바이오·의료 데이터 전주기를 아우르는‘의과학 특화 AI 파운데이션 모델’을 개발하며, AI 기반 생명과학 혁신 생태계 조성을 주도할 계획이다. ‘루닛 컨소시움’에는 루닛을 중심으로 트릴리온랩스, 카카오헬스케어, 아이젠사이언스, SK바이오팜, 리벨리온 등 7개 기업과, KAIST, 서울대, NYU, 국민건강보험공단 일산병원, 용인세브란스병원 등 9개 의료기관 및 연구기관이 함께 참여한다. 본 컨소시엄은 최신 B200 GPU 256장을 지원받아, 의료 데이터를 처음부터 끝까지 연결해 분석하는 AI 시스템인‘증거사슬(Chai
2025-11-14우리 대학이 추진 중인 ‘K-글로벌 딥테크 창업 전략’이 구체적인 성과로 이어지고 있다. 우리 대학은 창업원이 육성한 의료 AI 솔루션 기업 ㈜배럴아이(대표 배현민)가 글로벌 헬스케어 선도기업으로부터 약 140억 원(미화 1,000만 달러) 규모의 전략적 시리즈 A 투자를 유치하며, KAIST 딥테크 창업 생태계의 대표 성공 사례로 자리매김했다고 14일 밝혔다. ■ KAIST, 연구기반 딥테크 창업 전주기 지원체계 강화 KAIST 창업원은 과학기술 기반 창업을 통한 혁신 생태계 조성을 목표로 기술사업화·창업보육·투자연계·글로벌 진출 등 전주기 지원체계를 운영하고 있다. ‘K-글로벌 딥테크 창업 전략’을 중심으로 연구성과의 시장 진입과 글로벌 투자 유치를 촉진하며, 대한민국을 대표하는 딥테크 창업 허브로 성장하고 있다. KAIST는 특히 AI, 바이오헬스, 반도체, 미래모빌리티 등 첨단 산업 분
2025-11-13목표 과업에 좋은 성능을 보이는 신경망 구조를 찾는 것은 큰 비용이 소요되어, 신경망의 성능을 효율적으로 예측하는 방법론이 활발히 연구되었다. 우리 대학 김재철AI대학원 소속 김선우 박사과정, 황현진 석박통합과정(지도교수 신기정)은 그래프 기반 사전학습을 이용하여, 기존의 효과적인 방법론의 성능을 개선하면서, 약 43배 빠른 예측 속도를 보이는 예측 기법을 개발하였다. 인공지능 모델은 최근 다양한 분야에서 괄목할 성과를 거두었지만, 모델의 신경망 구조가 해당 모델의 성능에 영향을 크게 미치는 특징이 있다. 그러나 목표 과업에 적합한 신경망 구조를 알고자 직접적으로 해당 신경망 구조를 학습 및 평가하는 방식은 큰 비용이 소요된다. 이를 해결하기 위해, 다른 인공지능 모델을 사용하여 특정 신경망 구조의 성능을 예측하는 방식이 사용되었다. 경량화된 예측 모델은 예측 속도는 빠르나 예측 성능이 낮다는 한계가 있었고, 최근 개발된 방법론은 예측 정확도는 높으나 예측 속도가 매우 느린 문
2025-11-11우리 대학은 11월 14일, 컴퓨터 과학 분야 세계적 권위의 학술대회인 ‘정보 및 지식관리 학회(The 34th International Conference on Information and Knowledge Management, CIKM 2025)’에서‘인간 중심 AI: 설명가능성과 신뢰성에서 실행 가능한 윤리까지(Human-Centric AI: From Explainability and Trustworthiness to Actionable Ethics)’를 주제로 국제 워크숍(워크샵 조직위원장: KAIST 김재철AI대학원 최재식 교수)을 개최할 예정이다. 이번 행사는 KAIST 김재철AI대학원이 주도하고 서울대, 서강대, 성균관대, 한국전자통신연구원(ETRI), 독일 TU Berlin 등 국내외 유수 기관이 공동으로 참여하는 자리다. AI 기술의 잠재적 위험을 줄이고 책임 있는 활용을 위한 ‘인간 중심 AI&rsquo
2025-11-07KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다. KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다. KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold&rs
2025-11-07