< 김희탁 교수, 박정기 교수 >
우리 대학 생명화학공학과 김희탁 교수, 박정기 교수 공동 연구팀이 단순한 빛 조사만으로 실리카(유리)와 같은 단단한 세라믹 구조체의 모양을 정교하게 제어할 수 있는 기술을 개발했다.
이번 연구 성과는 재료과학분야의 국제 학술지 ‘에이시에스 나노(ACS Nano)’ 9월 21일자 온라인판에 게재됐다.
실리카 구조체는 유기물 구조체에 비해 고온, 고압 및 바이오 물질과의 안정성이 좋고 내화학성, 투명성 등이 높아 미세 유체칩 내부 채널, 태양전지 기판 등에 폭넓게 이용되고 있다.
그러나 실리카 특유의 높은 경도 때문에 실리카 구조체의 모양과 크기를 변화시키기 어려웠다. 특히 나노 스케일 구조 가공은 매우 어려운 것으로 여겨졌다.
연구팀은 문제 해결을 위해 아조 분자(질소 원자 두 개가 이중 결합된 아조기 양 끝에 벤젠링이 결합된 형태의 분자)를 이용했다. 아조 분자는 빛을 받았을 때 빛의 방향과 나란히 배열돼 편광 방향과 동일한 방향으로 움직이는 특성을 갖는다. 이를 응용하면 아조 분자와 결합된 실리카 전구체 분자가 빛의 방향에 따라 움직이는 특성을 갖게 된다.
연구팀은 이 아조 분자와 결합된 실리카 전구체를 용액-마이크로 임프린팅 기법의 잉크로 사용해 도장처럼 찍혀 나오듯 정해진 패턴의 형태로 제작했다.
이후 제작된 물질을 빛으로 가공한 뒤 열처리 하면 아조 분자가 포함된 유기물이 열분해돼 사라지게 된다. 결과적으로 무기물 전구체들만 남아 반응해 유리 구조체가 완성되는 것이다.
이 방법을 통해 30나노미터 이하 크기의 나노 구조를 갖는 대 면적 실리카 구조체를 제작했다. 또한 원형의 홀에 빛을 조사해 타원형의 홀 및 기둥 구조를 구현했다.
연구팀은 개발된 기술이 초소수성 기판, 미세유체칩 내의 미세채널 등 물리적 및 화학적 내구성이 요구되는 소자에 광범위하게 응용될 수 있을 것이라고 밝혔다.
김 교수는 “기존에 없었던 새로운 방식의 실리카 구조체 가공 방법을 개발했다”며 “세라믹을 나노 영역에서 다양한 형태로 구조 가공이 가능한 최초의 방식이다”고 말했다.
강홍석 박사 후 연구원이 1저자로 참여한 이번 연구는 한국연구재단의 일반연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 빛 조사 및 열처리를 통해 원형형태의 구조체로부터 타원형태의 실리카 구조체 제작
그림 2. 광학 사진 이미지. 전자현미경 사진을 통해 실리카 전구제 구조 변형 및 실리카 구조체 제작 확인
그림 3. 빛을 이용해 실리카 전구체 구조 가공 및 열처리를 통한 실리카 구조체 제작과정
최근, 나노 스케일의 물리/화학 센서부터 미터 스케일의 에너지 수확 소자까지, 전자 소자에 적용되는 소재 및 구조들의 형태가 점점 고도화되며 복잡한 형태로 발전해나가고 있다. 그에 따라 범용성이 높은 3차원 구조체 제작 기술의 개발에 많은 연구자들이 관심을 두고 있다. 우리 대학 기계공학과 박인규 교수와 한국기계연구원(KIMM) 정준호 전략조정본부장 공동연구팀이 `차세대 3차원 나노구조체 인쇄 기술'을 개발했다고 4일 밝혔다. 공동연구팀은 신축 기판 위 2차원 나노구조체의 안정적 구현과 인쇄될 기판의 표면 마이크로 구조 설계를 통해 3차원 나노구조체를 인쇄할 수 있음을 처음으로 선보였다. 기계공학과 안준성 박사후연구원이 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2023년 2월 온라인판에 출판됐다. (논문명: Nanoscale three-dimensional fabrication based on
2023-04-04우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다. 장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(A
2022-08-10우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다. 연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다. 이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다. 김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학
2022-03-31우리 대학 물리학과 박용근 교수 연구팀이 기존에는 이론조차 존재하지 않았던 물리학 난제 중 하나인 유전율 텐서의 3차원 단층 촬영 방법을 개발했다고 4일 밝혔다. 유전율 텐서는 빛과 물질의 상호작용을 근본적으로 기술하는, 물질의 광학적 이방성(異方性, 방향에 따라 달라 보이는 특성)을 정량적으로 표현할 수 있는 중요한 물리량이다. 유전율은 고등학교 물리학에서도 다루는 기본적인 개념이지만, 지금까지 3차원 유전율 텐서를 실험적으로 측정할 수 있는 방법이 존재하지 않았다. 병리학, 재료과학, 연성물질 과학, 또는 디스플레이 등 다양한 분야에서 갖는 중요성에도 불구하고, 직접적으로 측정할 방법이 없다는 한계가 있었다. 현재까지도 3차원 광학적 이방성은 2차원 편광현미경 측정 및 시뮬레이션을 통해 부정확하게 추정할 수밖에 없다. 3차원 유전율 텐서의 측정은 물리학, 광학 분야의 오래된 난제 중 하나였다. 1967년 광학적 이방성을 무시하고 유전율 텐서를 3차원 굴절률 수치로 단순
2022-03-04우리 대학 생명과학과 김학성 교수와 배진호 박사팀이 거대 (초분자) 단백질을 레고 블록 쌓듯 조립할 수 있는 새로운 기술을 개발했다고 19일 밝혔다. 이 방법으로 단백질 구조체의 크기 및 작용기 수를 원하는 대로 조절할 수 있고 메가 달톤(dalton) 크기의 대칭형 거대 단백질 구조체를 조립할 수 있다. 거대 단백질 구조체는 효율적인 약물 전달, 다양한 백신 개발, 그리고 질병 진단에 활용될 것으로 기대된다. 이번 연구 성과는 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)' (IF: 16.806)에 2021년 11월 1일 字 온라인 발표됐다. (논문명: Dendrimer-like supramolecular assembly of proteins with a tunable size and valency through stepwise iterative growth) 자연계에는 매우 다양한 특성과 기능을 갖는 단백질이 존재하며 생명현상을 유지하는데 핵심
2021-11-19