< 장관표창을 수상한 USRG팀 심현철 교수 >
우리 대학 전기및전자공학부 심현철 교수 연구팀(Unmanned System Research Group, 이하 USRG)이 9일(목) 「인공지능 그랜드 챌린지 간담회 」에서 과학기술정보통신부 장관 표창을받았다. 심현철 교수와 김보성, 이승욱 박사과정 학생(전기및전자공학부)이 수상하는 이번 장관상은‘국내 인공지능 기술 고도화 및 산업 발전’에 크게 공헌함을 인정받아 선정됐다.
먼저 USRG팀은 2019년과 2020년 「인공지능 자율주행 챌린지 대회」에서 2년 연속 우승을 달성했다. 이 대회는 드론에 탑재된 센서로 벽, 창문, 기둥 등의 장애물을 인식하고 피하며 목적지까지 안전하게 비행하는 대회이다.
USRG팀은 2019년 대회에서 자체 개발한 미션 플래너와 위치 추정·장애물 회피·제어 알고리즘으로 터널 구간까지 통과하여 1위를 차지했다. 2020년에는 보다 복잡해진 동적 장애물 회피와 박스에 물병을 투하하는 미션을 유일하게 모두 완료했고, 3차 비행 동안 계속 기록을 단축하며 최종 우승했다.
< 2021년 USRG 연구진이 참여한 Team CoSTAR 사진 >
이어, 2021년 NASA JPL과 협업하여 ‘DARPA Subterranean Challenge Final Event’에 Team CoSTAR의 일원으로 참가했다. NASA JPL 및 MIT, Caltech, LTU 등 해외 유수 대학들로 구성된 이 연구팀은 3차원 항법과 경로 계획, AI 기반의 객체 인식·위치 추정 알고리즘을 탑재한 지상 로봇과 드론을 개발했다. 그 결과 본선 최종연습에서 1, 2위를 기록하고 3일차 대회에서 5위를 달성했다.
연구팀은 이 대회에서 동굴 환경 내 위치 오차 5cm 이내의 3차원 위치 추정 알고리즘과 3차원 장애물 회피 경로 계획 알고리즘을 개발했다. 아울러 동굴 환경에서 60회 이상의 자율 비행 테스트를 진행하며 본 알고리즘 시스템의 안정성을 검증했다.
또한, 동 연구진은 2021년 10월 세계 최초 Indy Car 기반 자율주행 레이싱 대회인 Indy Autonomous Challenge(IAC)에 참가했다. 이에 고속 자율주행에 적합한 모델 예측 제어 기반의 시스템과 Head-to-head 레이싱을 위한 장애물 회피 및 추월 전략 알고리즘을 개발했다. 해당 연구 논문은 2021 ICRA 워크샵에서 Best Paper Award Winner에 선정되기도 하였다.
< (좌측부터) 장관표창을 수상한 USRG팀 김보성, 이승욱 박사과정 학생 >
USRG 팀의 심현철 교수는 “박사과정 중 복잡한 실내를 자유롭게 비행하는 드론을 만들고 싶었으나 당시 기술로는 불가능했다. 그리하여 기술이 발전함에 따라 이 같은 드론을 남들보다 먼저 연구했다. 최신 인공지능 기술을 적용하며 예전에는 상상할 수 없었던 우수한 성능의 드론을 만들 수 있게 되어 매우 뜻깊다”라고 소감을 전했다.
이어, “선뜻 시작하기 어려운 주제를 맡아 그간 열심히 수행한 학생들과 같이 공을 나눌 수 있어 더욱 기쁘다. 앞으로 이런 도전적인 연구를 적극적으로 수행하는 학생들이 더 많아졌으면 좋겠다”라고 강조했다.
우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30새 정부 출범과 함께 AI 및 과학기술 분야에 대한 사회적 관심이 크게 높아진 가운데, 우리 대학은 과학기술을 기반으로 국가 혁신을 주도하고 인류의 문제 해결에 앞장서는‘AI 중심 가치 창출형 과학기술특성화대학’으로 거듭날 계획임을 24일 밝혔다. 대한민국이 기술 주도형 사회로 대전환을 맞이하는 시점에서 KAIST는 지난 반세기 동안 국가 발전사의 '스타터킷(Starter Kit)' 역할을 수행해온 경험을 토대로, 단순한 교육·연구기관을 넘어 새로운 사회적 가치를 창출하는 글로벌 혁신 허브로의 도약을 준비하고 있다. 특히 우리 대학은 대한민국이 인공지능 주요 3개국(G3)에 도약할 수 있도록 전 국민이 소외 없이 AI를 활용할 수 있는 'AI 기본사회' 실현을 비전으로 제시했다. 이를 위해 KAIST가 주관하는 대한민국을 대표하는 ‘국가AI연구거점’사업(책임자 김기응)을 통해 AI 기술을 기반으로 산업 경쟁력을 제고하고 사회
2025-06-24임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일
2025-06-16“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다. 이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입해, 그 효과와 실용 가능성을 실제 교육
2025-06-05