< 장관표창을 수상한 USRG팀 심현철 교수 >
우리 대학 전기및전자공학부 심현철 교수 연구팀(Unmanned System Research Group, 이하 USRG)이 9일(목) 「인공지능 그랜드 챌린지 간담회 」에서 과학기술정보통신부 장관 표창을받았다. 심현철 교수와 김보성, 이승욱 박사과정 학생(전기및전자공학부)이 수상하는 이번 장관상은‘국내 인공지능 기술 고도화 및 산업 발전’에 크게 공헌함을 인정받아 선정됐다.
먼저 USRG팀은 2019년과 2020년 「인공지능 자율주행 챌린지 대회」에서 2년 연속 우승을 달성했다. 이 대회는 드론에 탑재된 센서로 벽, 창문, 기둥 등의 장애물을 인식하고 피하며 목적지까지 안전하게 비행하는 대회이다.
USRG팀은 2019년 대회에서 자체 개발한 미션 플래너와 위치 추정·장애물 회피·제어 알고리즘으로 터널 구간까지 통과하여 1위를 차지했다. 2020년에는 보다 복잡해진 동적 장애물 회피와 박스에 물병을 투하하는 미션을 유일하게 모두 완료했고, 3차 비행 동안 계속 기록을 단축하며 최종 우승했다.
< 2021년 USRG 연구진이 참여한 Team CoSTAR 사진 >
이어, 2021년 NASA JPL과 협업하여 ‘DARPA Subterranean Challenge Final Event’에 Team CoSTAR의 일원으로 참가했다. NASA JPL 및 MIT, Caltech, LTU 등 해외 유수 대학들로 구성된 이 연구팀은 3차원 항법과 경로 계획, AI 기반의 객체 인식·위치 추정 알고리즘을 탑재한 지상 로봇과 드론을 개발했다. 그 결과 본선 최종연습에서 1, 2위를 기록하고 3일차 대회에서 5위를 달성했다.
연구팀은 이 대회에서 동굴 환경 내 위치 오차 5cm 이내의 3차원 위치 추정 알고리즘과 3차원 장애물 회피 경로 계획 알고리즘을 개발했다. 아울러 동굴 환경에서 60회 이상의 자율 비행 테스트를 진행하며 본 알고리즘 시스템의 안정성을 검증했다.
또한, 동 연구진은 2021년 10월 세계 최초 Indy Car 기반 자율주행 레이싱 대회인 Indy Autonomous Challenge(IAC)에 참가했다. 이에 고속 자율주행에 적합한 모델 예측 제어 기반의 시스템과 Head-to-head 레이싱을 위한 장애물 회피 및 추월 전략 알고리즘을 개발했다. 해당 연구 논문은 2021 ICRA 워크샵에서 Best Paper Award Winner에 선정되기도 하였다.
< (좌측부터) 장관표창을 수상한 USRG팀 김보성, 이승욱 박사과정 학생 >
USRG 팀의 심현철 교수는 “박사과정 중 복잡한 실내를 자유롭게 비행하는 드론을 만들고 싶었으나 당시 기술로는 불가능했다. 그리하여 기술이 발전함에 따라 이 같은 드론을 남들보다 먼저 연구했다. 최신 인공지능 기술을 적용하며 예전에는 상상할 수 없었던 우수한 성능의 드론을 만들 수 있게 되어 매우 뜻깊다”라고 소감을 전했다.
이어, “선뜻 시작하기 어려운 주제를 맡아 그간 열심히 수행한 학생들과 같이 공을 나눌 수 있어 더욱 기쁘다. 앞으로 이런 도전적인 연구를 적극적으로 수행하는 학생들이 더 많아졌으면 좋겠다”라고 강조했다.
우리 대학 생명과학과 김세윤 교수 연구팀이 `약물 가상 스크리닝 기술을 이용한 신규 항암 치료제 개발'에 성공했다고 12일 밝혔다. 이번 연구 결과는 국제 학술지인 `세포 사멸과 질병(Cell Death & Disease)'에 지난 7월 12일 字 온라인 게재됐다. ※ 논문명 : Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR ※ 저자 정보 : 이보아 (한국과학기술원, 공동 제1 저자), 박승주 (한국과학기술원, 공동 제1 저자), 이슬기 (한국과학기술원, 제2 저자), 오병철 (가천대학교 의과대학, 공동 저자), 정원석 (한국과학기술원, 공동 저자), 손종우 (한국과학기술원, 공동 저자), 김세윤 (한국과학기술원, 교신저자), 포함 총 10명 `엠토르(mTOR)'라고 알려진 신호전달 단백질은 많은
2022-08-12인공지능 반도체(이하 AI 반도체)가 국가적인 전략기술로 두드러지면서 KAIST의 관련 성과도 주목받고 있다. 과학기술정보통신부는 지난해 2030년 세계 AI 반도체 시장 20% 점유를 목표로 인공지능 반도체 지원사업에 본격적으로 착수한 바 있다. 올해에는 산학연 논의를 거쳐 5년간 1조 200억 원을 투입하는 `인공지능 반도체 산업 성장 지원대책'으로 지원을 확대했다. 이에 따라 AI 반도체 전문가 양성을 위해 주요 대학들의 행보도 분주해졌다. KAIST는 반도체와 인공지능 양대 핵심 분야에서 최상급의 교육, 연구 역량을 쌓아 왔다. 반도체 분야에서는 지난 17년 동안 메사추세츠 공과대학(이하 MIT), 스탠퍼드(Stanford)와 같은 세계적인 학교를 제치고 국제반도체회로학회(이하 ISSCC, International Solid State Circuit Conference)에서 대학 중 1위를 지켜 왔다는 점이 돋보인다. ISSCC는 1954년 설립된 반도체 집적회로 설계
2022-08-04우리 대학 전기및전자공학부 이성주 교수 연구팀이 국제공동연구를 통해 다수의 모바일 기기 위에서 인공지능(AI) 모델을 학습할 수 있는 연합학습 기술의 학습 속도를 4.5배 가속할 수 있는 방법론을 개발했다고 2일 밝혔다. 이성주 교수 연구팀은 지난 6/27~7/1에 열린 세계컴퓨터연합회(ACM) 주최로 진행된 제20회 모바일 시스템, 어플리케이션, 및 서비스 국제학술대회(MobiSys, International Conference on Mobile Systems, Applications, and Services)에서 연합학습(Federated Learning)의 학습 속도 향상(4.5배 가속)을 위한 데이터 샘플 최적 선택 및 데드라인 조절 방법론을 발표했다. 이 학회는 2003년에 시작됐으며 모바일 시스템, 소프트웨어, 어플리케이션, 서비스를 위한 최신 연구를 소개하는 데 초점을 맞추고 있으며, 모바일 컴퓨팅 및 시스템 분야의 최우수 학회 중 하나로 오랫동안 주목받고 있다.
2022-08-02우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 대용량 메모리 장치부터 프로세스를 포함한 컴퓨트 익스프레스 링크(CXL) 2.0 기반의 차세대 메모리 확장 플랫폼 ‘다이렉트CXL(이하 DirectCXL)’을 세계 최초로 프로토타입 제작, 운영체제가 실장된 단대단(End-to-End) 시연에 성공했다고 1일 밝혔다. 오늘날 빅데이터 분석, 그래프 분석, 인메모리 데이터베이스 등 대규모 데이터에 기반한 응용처리가 증가함에 따라, 데이터 센터에서는 이를 더 빠르고 효율적으로 처리하기 위해 시스템의 메모리 확장에 많은 투자를 하고 있다. 그러나 우리가 흔히 알고 있는 메모리 확장 방식인 더블 데이터 대역폭(DDR) 인터페이스를 통한 메모리 확장은 추가할 수 있는 메모리 개수의 제한이 있어, 대규모 데이터 기반의 응용을 처리하기에 충분치 않다. 따라서 데이터 센터에서는 CPU와 메모리로 이루어진 메모리 노드들을 따로 구
2022-08-01우리 대학 김재철AI대학원 예종철 교수 연구팀이 서울대학교 병원, 서울 아산병원, 충남대학교 병원, 영남대학교 병원, 경북대학교 병원과의 공동연구를 통해 결핵, 기흉, 코로나-19 등의 흉부 엑스선 영상을 이용한 폐 질환의 자동 판독 능력을 스스로 향상할 수 있는 자기 진화형 인공지능 기술을 개발했다고 27일 밝혔다. 현재 사용되는 대부분의 의료 인공지능 기법은 지도학습 방식 (Supervised learning)으로서 인공지능 모델을 학습하기 위해서는 전문가에 의한 다량의 라벨이 필수적이나, 실제 임상 현장에서 전문가에 의해 라벨링 된 대규모의 데이터를 지속해서 얻는 것이 비용과 시간이 많이 들어 이러한 문제가 의료 인공지능 발전의 걸림돌이 돼왔다. 이러한 문제를 해결하기 위해, 예종철 교수팀은 병원 현장에서 영상의학과 전문의들이 영상 판독을 학습하는 과정과 유사하게, 자기 학습과 선생-학생 간의 지식전달 기법을 묘사한 지식 증류 기법을 활용한 자기 지도학습 및 자
2022-07-27