< (왼쪽부터) 생명과학과 허원도 교수, 원종하 박사 >
우리 대학 생명과학과 허원도 교수 연구팀은 빛으로 뇌 기능 및 행동을 자유자재로 조절하는 광유전학 기술인 ‘Opto-vTrap(옵토-브이트랩)’을 개발했다. 나아가 동물실험을 통해 뇌 활성 뿐 아니라 활동과 감정까지 조절할 수 있음을 확인했다.
뇌 활성은 신경세포와 신경교세포와 같은 뇌세포들이 서로 신호를 주고받으며 조절된다. 이 같은 상호작용은 뇌 세포 내 ‘소낭’안에 담긴 신경전달물질 분비를 통해 이루어진다. 소낭이 뇌 활성을 조절하는 사령관인 셈이다. 뇌 활성 조절은 뇌 연구를 위한 필수 기술이다. 뇌의 특정 부위나 세포의 활성을 촉진 및 억제해보면 특정 뇌 부위가 담당하는 기능, 여러 뇌 부위 간 상호작용의 역할, 특정 상황에서 다양한 뇌세포의 기능 등 특정 상황에서 뇌 작동이 어떠한 원리로 일어나는지 밝힐 수 있기 때문이다.
그러나 기존 뇌 활성 조절 기술은 원하는 시점에 특정 뇌세포의 활성을 자유롭게 조절하기 어려웠다. 지금까지는 세포 전위차 조절 방식을 사용하였는데, 이는 주변 환경의 산성도를 변화시키거나 원하지 않는 다른 자극을 유발할 뿐만 아니라 전위차에 반응하지 않는 세포에는 사용하지 못하는 한계가 있었다. 이번에 개발한 Opto-vTrap 기술은 세포 소낭을 직접 특이적으로 조절할 수 있어 원하는 시점에 다양한 종류의 뇌세포에서 이용이 가능하다.
연구진은 신경전달물질 분비를 직접 조절하고자 세포에 빛을 쪼이면 순간적으로 내부에 올가미처럼 트랩을 만드는 자체 개발 원천기술을 응용, 소낭에 적용했다. Opto-vTrap을 발현하는 세포나 조직에 빛(청색광)을 가하면 소낭 내 광수용체 단백질들이 엉겨 붙으며 소낭이 트랩 안에 포획되고 신경전달물질 분비가 억제된다. 요컨대 Opto-vTrap으로 소낭의 신호전달물질 분비를 직접 제어하여 뇌 활성을 자유롭게 조절하는 것이다. 연구진은 세포와 조직실험에서 나아가 Opto-vTrap 바이러스를 이용한 동물실험을 통해 뇌세포 신호전달 뿐만 아니라 기억·감정·행동도 조절 가능함을 확인하였다.
Opto-vTrap을 이용하면 뇌의 여러 부위간 복합적 상호작용 원리를 밝히고, 뇌세포 형태별 뇌 기능에 미치는 영향을 연구하는 데 유용하게 활용될 것으로 기대된다.
< 그림 1. 광유전학적 세포소낭 분비 억제 시스템 Opto-vTrap의 모식도. 세포소낭과 세포질에 Opto-vTrap를 발현시키고, 청색광을 통해 세포소낭 복합체를 만들어 소낭 내 신호전달물질의 분비를 억제하는 기술을 개발했다. 청색광을 끄면 신호전달물질이 다시 정상적으로 분비하므로 원하는 타이밍에 뇌 기능을 조절할 수 있다. >
허원도 교수는 “Opto-vTrap은 신경세포와 신경교세포 모두에 잘 작동되기에 향후 다양한 뇌과학 연구 분야에 이용되리라 기대한다” 며 “앞으로 본 기술을 활용하여 특정 뇌세포의 시공간적 기능 연구를 진행하고자 한다.”고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견연구과제 및 KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다.
이번 연구 결과는 뇌 과학 학술지 뉴런 (Neuron, IF:17.173) 에 12월 1일(수) 1시(한국시간) 게재됐다.
우리 대학 전기 및 전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis) 연구팀과의 공동 연구를 통해 3D 프린팅 기반의 광유전학 뉴럴 프로브 공정 기술을 개발했다고 밝혔다. 광유전학은 빛을 사용해 목표로 하는 특정 신경세포를 선택적으로 정교하게 조절할 수 있는 기술로서 뇌 연구 및 뇌질환 치료분야에서 많은 각광을 받고 있다. 뇌에 광유전학을 적용하기 위해서는 빛을 목표 신경회로에 정확히 전달할 수 있는 장치가 요구된다. 따라서 서로 다른 광유전학 기반 뇌 연구 실험을 진행할 때마다 실험 대상 동물과 목표 신경회로의 위치에 최적화된 디자인을 갖는 뇌 이식용 뉴럴 프로브가 필요하다. 반도체 공정 기반의 광전자 뉴럴 프로브는 실험 목적에 맞게 길이와 형태를 설정하여 제작할 수 있어 광유전학 연구에서 널리 사용되고 있다. 하지만 반도체 공정은 많은 기반 시설과 전문성이 요구되어 신경과학자가 직접 접근하기 힘들다.
2023-01-18우리 연구진이 인터넷을 이용해 뇌 신경회로를 원격 제어할 수 있는 무선 네트워크 기술을 개발했다. 이 기술을 활용하면 시간과 장소에 구애받지 않고 목표 동물의 뇌 신경회로를 정교하게 제어할 수 있다. 우리 대학 전기및전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis), 미국 콜로라도 대학교(University of Colorado Boulder) 연구팀과의 공동 연구를 통해 사물인터넷 기반의 뇌 신경회로 원격제어 시스템을 개발했다고 8일 밝혔다. 이번 개발 기술은 많은 시간과 인력이 있어야 하는 뇌 연구 및 다양한 신경과학 연구를 자동화시켜 다양한 퇴행성 뇌 질환과 정신질환의 발병 기전 규명과 치료법 개발의 가속화에 크게 기여할 것으로 기대된다. 또한, 먼 거리에 있는 환자의 질환을 원격으로 치료하는 원격 의료 구현에도 활용될 수 있을 것으로 예상된다. 우리 대학 전기및전자공학부 라자 콰지(Raza Qaz
2021-12-08우리 대학 생명과학과 이승희 교수 연구팀이 시각 정보를 인식해 목표 지향적 행동을 결정하는 대뇌 전두엽의 신경회로 기전을 새롭게 규명했다고 26일 밝혔다. 이 교수 연구팀은 시각 피질과 상호 작용하는 전측 대상회(전대상) 피질(Anterior cingulate cortex, ACC)의 억제성 신경회로가 동물이 시각 정보를 인식하고 이에 맞는 정확한 행동을 개시하는 데 중요한 역할을 함을 밝혔다. 연구 결과는 포유류 전두엽 전대상 피질의 신경회로가 어떻게 시각 인지 행동 및 충동적 행동을 제어할 수 있는지를 새롭게 규명해, 주의력결핍과잉행동장애(ADHD)와 같은 인지장애 및 충동성을 주 증상으로 하는 뇌질환 치료에 적용될 수 있을 것으로 기대된다. 생명과학과 김재현 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 뉴로사이언스 (Nature Neuroscience, IF 20.071)' 8월 19일 字 온라인판에 게재됐다. (논문명 : Gated feedforwa
2021-08-26우리 대학 생명과학과 한진희 교수 연구팀이 무수히 많은 뉴런과 이들 사이의 시냅스 연결로 구성된 복잡한 신경 네트워크에서 기억을 인코딩하는 뉴런이 선택되는 근본 원리를 규명했다고 13일 밝혔다. 우리 대학 생명과학과 정이레 박사가 제1 저자로 참여한 이번 연구는 네이처 출판 그룹의 오픈 액세스(Open-access) 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 24일 字로 게재됐다. (논문명: Synaptic plasticity-dependent competition rule influences memory formation) 과거의 경험은 기억이라는 형태로 뇌에 저장되고 나중에 불러오게 된다. 이러한 기억은 뇌 전체에 걸쳐 극히 적은 수의 뉴런들에 인코딩되고 저장된다고 알려져 있다. 하지만 이 뉴런들이 미리 정해져 있는 것인지, 아니면 어떤 원리에 의해 선택되는 것인지는 불확실하다. 이 질문을 해결하는 것은 신경과학
2021-07-13우리 연구진이 무선 충전 가능한 뇌 이식 장치를 개발했다. 이 장치는 이식 후 생체 내에서 장기간에 걸쳐 배터리 교체 없이 스마트폰을 이용해 빛으로 뇌의 신경회로를 정교하게 조절할 수 있다. 우리 대학 전기및전자공학부 정재웅 교수 연구팀이 연세대 의대 김정훈 교수팀과 공동 연구를 통해 뇌 완전 이식형 무선 광유전학 기기를 개발했다고 26일 밝혔다. 이번 개발 기술은 장기간에 걸친 동물 실험이 필요한 뇌 기능 연구뿐 아니라 향후 인체에 적용돼 중독과 같은 정신질환 및 파킨슨병과 같은 퇴행성 뇌 질환 치료에도 적용될 수 있을 것으로 기대된다. 우리 대학 전기및전자공학부 김충연 박사과정, 연세대 의대 구민정 박사과정 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 22일 字에 게재됐다. (논문명 : Soft subdermal implant capable of wireless battery char
2021-01-26