< (왼쪽부터) 신소재공학과 전석우 교수, 김일두 교수, 함영진 박사과정 >
우리 대학 신소재공학과 전석우 교수와 김일두 교수, 미국 일리노이대학 어바나-샴페인 캠퍼스 폴 브라운(Paul V. Braun) 교수 공동연구팀이 차세대 친환경 유기 이차전지의 핵심기술을 개발하는 데 성공했다고 24일 밝혔다.
연구진은 재현성 있는 광학 패터닝 기술을 통해 고도로 정렬된 나노 네트워크 구조의 유기 음극을 설계해 리튬유기전지의 성능을 획기적으로 향상시켰다. 연구진이 이번에 확보한 충·방전 특성은 현재까지 보고된 유기 음극 소재 중 가장 높은 수준으로, 무기물 기반의 현 전극 소재를 대체할 수 있으며 장기적으로는 전기차 또는 휴대용 전자기기 등 상용화에 크게 기여할 것으로 기대되고 있다.
유기 이차전지는 원료 수급에 제한이 적고 저렴한 유기 전극 소재를 기반으로 하며 전극의 경량화가 가능하고 우수한 가변성은 물론 재활용이 용이하다는 장점이 있어 지속 가능한 친환경 전지 시스템으로 각광 받고 있다.
하지만 유기물의 낮은 전기전도도를 극복하기 위해 높은 함량의 탄소계 도전재가 첨가돼 고에너지밀도 달성에는 한계가 있었다. 또한, 실제 전기차 및 휴대용 전자기기 등에 적용되기 어려운 느린 충전 속도와 수명 저하 이슈가 결정적인 걸림돌로 지적돼왔다.
연구진은 전기화학적 활성과 안정성을 제한하는 기존의 비정렬적 전극 구조 대신 정렬된 서브 마이크론(100만분의 1미터 이하) 크기의 기공 채널을 갖는 3차원 이중 연속 구조의 유기 고분자-니켈 복합전극을 도입했다.
그 결과 탄소계 도전재 없이도 속도 특성을 비약적으로 향상하는 데 성공했으며, 15 A g-1 의 높은 전류밀도에서도 250회의 충·방전 사이클 동안 전극의 용량이 83% 이상 유지되는 높은 내구성과 안정성을 확인했다.
나아가 3차원 나노 네트워크 구조를 기반으로 유기물 내 다중 탄소 고리의 불포화 결합에서의 촉진된 `슈퍼리튬화' 현상을 규명해 1,260mAh g-1의 높은 가역 용량 달성을 확증함과 동시에 우수한 전하 이동에 대한 동역학 분석을 통해 초고속 성능의 메커니즘을 검증했다.
< 그림 1. 3차원 고분자 나노 네트워크 기반 리튬유기전지 모식도 및 율특성의 획기적인 향상 >
전석우 교수는 "친환경적이고 유망한 에너지 저장을 실현하기 위한 유기 전극의 구조 공학적 설계 방향을 새롭게 제시한 결과ˮ라며 "이번 연구의 3차원 정렬 나노 네트워크 구조는 다양한 유기 화합물과 호환 가능해 유기 전극의 플랫폼으로써 일반적 활용이 가능하다ˮ라고 밝혔다.
우리 대학 신소재공학과 함영진 박사과정이 제1 저자로 참여한 이번 연구는 에너지·환경 분야 최고 권위지 `에너지와 환경 과학(Energy & Environmental Science, IF: 38.532)' 11월호에 게재되는 한편 학계 및 일반인에게 널리 알릴만한 내용으로 인정받아 내부 표지 논문(Inside Back Cover)으로 선정됐다. (논문명: 3D Periodic Polyimide Nano-Networks for Ultrahigh-Rate and Sustainable Energy Storage)
한편 이번 연구는 한국연구재단 미래소재디스커버리사업의 지원을 받아 수행됐다.
< 그림 2. 연구논문이 소개된 에너지와 환경과학 11월호 내부표지 >
현대사회에서 우리의 삶을 위협하는 탄소 순환 불균형에 못지않게 부각되는 질소 순환 문제가 중요한 이슈다. 특히 질산염은 수질 오염, 산성비, 그리고 최근 기승을 부리는 미세먼지의 생성 원인으로도 알려져 있으며, 암모니아는 주로 농업용 비료, 플라스틱, 폭발물, 의약품, 선박용 청정원료, 수소 운반체, 암모니아 발전 등 다양한 산업군에 쓰이는 유용한 자원이다. 우리 대학 신소재공학과 강정구 교수 연구팀이 전기를 이용해 저농도 질산염 수용액으로부터 암모니아를 생산하는 고효율 촉매를 개발했다고 8일 밝혔다. 연구팀이 개발한 전기 촉매는 구리 금속 폼(Cu foam)과 니켈-철 층상이중수산화물(NiFe Layered double hydroxide)의 복합체로 구성돼 있다. 구리 폼은 질산염을 선택적으로 흡착하고, 니켈-철 층상이중수산화물은 화학이나 생체반응을 통해 반응 중 생성된 중간체 수소 라디칼을 생성해 구리 폼에 전달함으로써 질산염이 암모니아로 바뀌도록 효율적으로 진행
2023-02-08우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다. ※ 논문명 : Metabolic engineering for sustainability and health ※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은
2023-01-25우리 대학이 21일 제주시에 위치한 KAIST 친환경스마트자동차연구센터에서 ‘국제 미래자동차 기술 심포지엄’을 개최한다. 지난 수년간 코로나19 팬데믹으로 이동의 필요성이 일시적으로 줄어들었지만, 세계 각국 정부와 기업들은 지속가능한 교통과 물류 시스템을 갖추기 위해 발 빠르게 움직이고 있다. 이에 맞춰 전기차 및 자율주행은 물론 도심항공모빌리티(Urban Air Mobility, UAM)에 이르기까지 다양한 교통수단과 관련 기술에 대한 수요는 더욱 확대되고 있다. ‘미래 자동차 분야의 혁신(Innovations in Future Mobility)’을 주제로 열리는 이번 국제심포지엄은 전 세계가 직면하고 있는 모빌리티 분야의 난제와 이를 해결하기 위한 기술적·제도적 방안을 공유하고 논의하기 위해 마련됐다. 우리 대학 조천식모빌리티대학원(학과장 장인권)과 항공우주공학과(학과장 이정률)가 공동 주관하며, 자율주행, U
2022-10-21우리 대학 생명과학과 조병관 교수 연구팀이 산업 부생가스 등으로 대량 발생하는 고농도의 일산화탄소를 고부가가치 바이오케미칼로 전환할 수 있는 생체촉매 기반 C1 바이오 리파이너리 기술*을 개발했다고 14일 밝혔다. * 제철 공정과 같은 산업공정에서 발생하는 부생가스, 합성가스는 다량의 일산화탄소, 이산화탄소 등의 탄소 1개로 이루어진 C1 가스로 구성되어 있음. 이러한 C1 가스를 미생물과 같은 생체촉매를 활용하여 다양한 화학물질로 전환하는 공정을 C1 가스 바이오 리파이너리(bio-refinery) 기술이라고 함. 최근 탄소 포집 및 전환과 같은 기술들에 대한 산업계의 요구가 커지는 가운데, 미생물을 활용한 친환경 생체촉매 기술이 크게 성장하고 있다. 조병관 교수 연구팀은 아세토젠 미생물을 생체촉매로 활용한 C1 가스 바이오 리파이너리 기술을 개발했다. 이 미생물들은 혐기성 미생물들로 우드-융달 대사회로라는 매우 독특한 대사회로를 이용하여 C1 가스로부터 아세트산을
2022-07-15우리 대학 생명화학공학과 신디(Cindy Pricilia Surya Prabowo) 박사과정생과 은현민 박사과정생을 포함한 이상엽 특훈교수 연구팀이 `미생물 기반의 천연색소 생산을 위한 시스템 대사공학 전략’ 논문을 발표했다고 6일 밝혔다. 생명화학공학과의 신디(Cindy Pricilia Surya Prabowo) 박사과정생, 은현민 박사과정생, 양동수 박사, 담라(Damla) 박사과정생과 농촌진흥청 농업미생물과의 김수진 박사가 함께 참여한 이번 논문은 셀(Cell) 誌가 발행하는 화학 분야 권위 리뷰 저널인 `화학의 동향(Trends in Chemistry)' 7월호 표지논문 및 주 논문 (Featured Article)으로 1일 字 게재됐다. ※ 논문명 : Production of natural colorants by metabolically engineered microorganisms ※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), Cindy(한
2022-07-06