< (왼쪽부터) 기계공학과 유승화 교수, 김용태 박사과정, 김영수 박사 >
우리 대학 기계공학과 유승화 교수 연구팀이 능동-전이 학습 (active-transfer learning)과 데이터 증강기법(Data augmentation)에 기반해, 심층신경망 초기 훈련에 쓰인 소재들과 형태와 조합이 매우 다른 우수한 특성을 지닌 소재를 효율적으로 탐색하고 설계하는 방법론을 개발했다고 16일 밝혔다.
인공신경망에 기반해 방대한 설계 공간에서 새로운 소재를 찾기 위한 역설계 연구는 최근 매우 활발하게 진행되고 있다. 하지만 이러한 기존 설계 방식은 목표로 하는 소재의 형태와 조합이 심층신경망 훈련에 활용된 소재들과 매우 다를 때 인공신경망이 가지는 낮은 예측능력으로 인해 극히 많은 수의 소재 데이터 검증이 요구되며, 이에 따라 제한적으로만 활용이 가능하다.
< 그림 1. 능동-전이 학습과 유전 알고리즘에 의해 생성된 데이터 추가 기반으로 하는 인공신경망의 신뢰할 수 있는 예측 영역의 점진적 확장 모식도그림 1. 능동-전이 학습과 유전 알고리즘에 의해 생성된 데이터 추가 기반으로 하는 인공신경망의 신뢰할 수 있는 예측 영역의 점진적 확장 모식도 >
연구팀은 이번 연구에서 이를 극복하기 위해 초기 훈련 데이터 영역에서 벗어나 우수한 소재를 효율적으로 탐색할 수 있는 인공신경망 기반 전진 설계 (Forward design) 방법론을 제안했다. 이 방법론은, <그림 1>에 도시된 바와 같이 유전 알고리즘과 결합된 능동-전이 학습 및 데이터 증강기법을 통해 심층신경망을 점진적으로 업데이트함으로써, 초기 훈련데이터를 벗어난 영역에서 심층신경망의 낮은 예측능력을 적은 숫자의 데이터 검증 및 추가로 보완한다.
유전 알고리즘에 의해 제안되는 우수 소재 후보군은 기보유한 소재 데이터를 조합해 도출하기 때문에 심층신경망의 신뢰할 수 있는 예측 영역과 설계 공간 측면에서 상대적으로 가까워 예측정확도가 유지된다. 이 후보군과 능동-전이 학습을 활용해 점진적으로 심층신경망의 신뢰성 있는 예측 범위를 확장하면, 초기 훈련데이터 영역 밖에서도 적은 데이터를 생성해 효율적인 설계 과정이 가능하다.
이번 방법은 천문학적인 수의 설계 구성을 가지는 그리드 복합소재 최적화 문제에 적용해 검증했으며, 이를 통해 전체 가능한 복합재 구조의 1029분의 1 가량인 10만 개의 복합재들만 초기 훈련 데이터로 활용해 심층신경망을 학습한 후, 이후 약 500개에 미치지 못하는 데이터 검증을 통해 초기 훈련에 쓰인 복합재와 매우 다른 구조를 가지고 우수한 특성을 지닌 복합재 구조를 설계할 수 있음을 보였다.
연구진이 개발한 방법론은 국소 최적점(Local optima)에 수렴하는 문제를 완화하면서도 인공신경망의 신뢰할 수 있는 예측 영역을 점진적으로 확장하는 효율적인 방법을 제공하기 때문에, 큰 설계 공간을 다루는 다양한 분야의 최적화 문제에 적용할 수 있을 것으로 기대되며, 특히 설계에 요구되는 데이터 검증의 숫자가 적기 때문에 데이터 생성에 시간이 오래 걸리고 비용이 많이 드는 설계 문제에서 이 방법론이 크게 활용될 수 있을 것으로 기대된다.
< 그림 2. 능동-전이 학습과 유전 알고리즘에 기반한 재료 설계의 흐름도 >
이번 연구는 공동 제 1저자 김용태 박사과정, 김영수 박사(한국기계연구원) 주도하에 진행됐으며, 유승화 교수(우리 대학 기계공학과)가 교신저자로 참여해, 국제학술지인 `npj 컴퓨테이셔널 머터리얼(Computational Material, IF:12.241)'에 `Deep Learning Framework for Material Design Space Exploration using Active Transfer Learning and Data Augmentation' 라는 제목으로 게재됐다.
이번 연구는 한국연구재단의 중견 연구자지원사업(3D 프린팅 복합재의 최적설계기법 및 피로수명 예측기법 개발)과 미래소재 디스커버리 사업 (레이저-물질 상호작용 멀티스케일 모델링을 통한 분자디자인), KAIST 글로벌 특이점 프렙 사업의 지원을 통해 수행됐다.
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. GPT와 같은 거대 언어 모델을 훈련하기 위해서는 수백 대의 GPU와 몇 주 이상의 시간이 필요하다고 알려져 있다. 따라서, 심층신경망 훈련 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층신경망 훈련 비용을 최소화할 수 있도록 훈련 데이터의 양을 줄이는 새로운 데이터 선택 기술을 개발했다고 2일 밝혔다. 일반적으로 대용량의 심층 학습용 훈련 데이터는 레이블 오류(예를 들어, 강아지 사진이 `고양이'라고 잘못 표기되어 있음)를 포함한다. 최신 인공지능 방법론인 재(再)레이블링(Re-labeling) 학습법은 훈련 도중 레이블 오류를 스스로 수정하면서 높은 심층신경망 성능을 달성하는데, 레이블 오류를 수정하기 위한 추가적인 과정들로 인해 훈련에 필요한 시간이 더욱 증가한다는 단점이 있다. 한편 막대한 훈련 시간을 줄이려는 방법으로 중복되
2023-11-02면역항암치료는 환자의 면역 시스템을 활성화해 암을 치료하는 혁신적인 3세대 항암 치료 방법으로 알려져 있다. 하지만 면역항암 치료제는 면역활성화에 의해 기존 항암제와는 구분되는 자가면역질환과 유사한 부작용을 유발할 수 있다는 새로운 문제가 제기됐다. 이러한 부작용은 심각한 경우 환자를 죽음에까지 이르게 할 수 있기에 부작용에 대한 연구가 절실한 상황에 놓여있다. 우리 대학 바이오및뇌공학과 최정균 교수팀과 서울아산병원 종양내과 박숙련 교수팀은 면역항암제 치료를 받은 고형암 환자에 대한 대규모 전향적 코호트를 구축하고, 다차원적 분석을 통해 면역항암제 부작용의 위험요인을 규명했다고 22일 밝혔다. 또한 인공지능 딥러닝을 이용해 치료 전 환자에게서 부작용이 나타날지를 예측할 수 있는 모델까지도 개발했다고 알렸다. 기존의 관련 연구들은 소규모로 진행이 되거나, 적은 수의 지표로 국한된 범위에 대해서만 행해졌다. 또한 수행된 연구들은 면역 관련 부작용을 위해 디자인된 연구 설계가
2023-06-22우리 대학 기계공학과 박인규 교수, 윤국진 교수와 물리학과 조용훈 교수 공동 연구팀이 `초저전력, 상온 동작이 가능한 광원 일체형 마이크로 LED 가스 센서 기반의 전자 코 시스템'을 개발하는 데 성공했다고 14일 밝혔다. 공동 연구팀은 마이크로 크기의 초소형 LED가 집적된 광원 일체형 가스 센서를 제작한 이후 합성곱 신경망 (CNN) 알고리즘을 적용해 5가지의 미지의 가스를 실시간으로 가스 종류 판별 정확도 99.3%, 농도 값 예측 오차 13.8%의 높은 정확도로 선택적 판별하는 기술을 개발했다. 특히 마이크로 LED를 활용한 광활성 방식의 가스 감지 기술은 기존의 마이크로 히터 방식 대비 소모 전력을 100분의 1 수준으로 획기적으로 절감한 것이 특징이다. 이번 연구에서 개발된 초저전력 전자 코 기술은 어떠한 장소에서든지 배터리 구동 기반으로 장시간 동작할 수 있는 모바일 가스 센서로 활용될 것으로 기대된다. 타깃 가스의 유무에 따라 금속산화물 가스 감지 소재의
2023-02-14딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다. 연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙
2023-02-06우리 대학 기계공학과 황보제민 교수 연구팀이 모래와 같이 변형하는 지형에서도 민첩하고 견고하게 보행할 수 있는 사족 로봇 제어기술을 개발했다고 26일 밝혔다. 황보 교수 연구팀은 모래와 같은 입상 물질로 이루어진 지반에서 로봇 보행체가 받는 힘을 모델링하고, 이를 사족 로봇에 시뮬레이션하는 기술을 개발했다. 또한, 사전 정보 없이도 다양한 지반 종류에 스스로 적응해가며 보행하기에 적합한 인공신경망 구조를 도입해 강화학습에 적용했다. 학습된 신경망 제어기는 해변 모래사장에서의 고속 이동과 에어 매트리스 위에서의 회전을 선보이는 등 변화하는 지형에서의 견고성을 입증해 사족 보행 로봇이 적용될 수 있는 영역을 넓힐 것으로 기대된다. 기계공학과 최수영 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)' 1월 8권 74호에 출판됐다. (논문명 : Learning quadrupedal locomotion on deformabl
2023-01-26