우리 학교 신소재공학과 전석우(39) 교수는 물리학과 조용훈(48) 교수, 전기및전자공학과 유승협(43) 교수와 공동으로 세계에서 처음으로 흑연으로부터 고품질의 그래핀 양자점을 개발하는데 성공했다.
연구팀은 그래핀의 원재료인 흑연에 염(salt)과 물만을 이용한 흑연층간 화합물을 합성해 친환경적인 방법으로 그래핀 양자점을 만들었다.
개발된 양자점은 지름이 5nm(나노미터, 10억분의 1미터) 정도로 크기가 매우 균일하면서도 높은 양자 효율을 보였으며, 기존 양자점과 달리 납, 카드뮴 등의 독성 물질이 포함돼 있지 않다. 또 자연에서 쉽게 얻을 수 있는 재료(흑연, 염, 물)로만 만들어 적은 비용으로 대량생산이 가능할 것으로 기대된다.
이와 함께 연구팀은 그래핀 양자점의 발광 메커니즘을 규명했으며 제조된 그래핀 양자점을 통해 휴대폰 디스플레이의 최대 밝기(수백 cd/㎡)보다 높은 1,000 cd/m2(cd, 칸델라) 이상의 높은 휘도를 갖는 그래핀 양자점 LED를 개발해 상용화 가능성을 최초로 입증했다.
전석우 교수는 “아직은 기존 LED의 발광효율에는 못 미치지만 발광 특성은 향후 더욱 향상될 가능성이 많다”며 “특히 그래핀 양자점을 활용하면 종잇장처럼 얇은 디스플레이는 물론 커튼처럼 유연한 소재에도 원하는 정보가 표시되는 기술도 가능할 것”이라고 밝혔다.
연구팀이 KAIST 나노융합연구소 그래핀 연구센터의 지원을 받아 수행된 이번 연구는 ‘어드밴스드 옵티컬 머티리얼스(Advanced Optical Materials)’ 20일자 온라인판에 게재됐다.
그림1. 그래핀 양자점 합성 과정 및 그래핀 양자점 이미지
그림2. 그래핀 양자점 발광 메커니즘
그림3. 그래핀 양자점 적용 LED 구조 및 발광 이미지
< 20140828%2B3.jpg >
최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다. *아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용 우리 대학 전기및전자공학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다고 8일 밝혔다. *아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술 화학적으로 합성된
2025-01-08생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다. *리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질. InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유
2024-12-18디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26우리 대학 생명화학공학과 박현규 교수, 신소재공학과 정연식 교수 공동 연구팀이 암 관련 마이크로RNA를 다중 검출할 수 있는 다색 양자점(퀀텀닷) 어레이를 개발했다고 20일 밝혔다. 신소재공학과 남태원 박사와 생명화학공학과 박연경 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회(American Chemical Society)가 발행하는 국제 학술지 `ACS 나노(ACS Nano)'에 2022년도 6월 15일 字 온라인판에 게재됐다. (논문명: Polychromatic quantum dot array to compose a community signal ensemble for multiplexed miRNA detection) 마이크로RNA는 18~25개의 염기서열로 이루어진 짧은 RNA로, 유전자 발현을 조절함으로써 세포 성장 및 분화와 같은 다양한 세포 활동을 제어한다. 마이크로RNA의 비정상적인 발현은 암을 포함한 다양한 질병과 밀접하게 연관돼있어, 여러 가지
2022-07-20우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다. ☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다. 이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다. 생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cu
2022-06-16