< (왼쪽부터) 문화기술대학원 박주용 교수, 이원재 교수, 노준용 교수 >
우리 대학은 KBS(사장 양승동)와 함께 한국형 보도영상 인공지능(AI) 데이터베이스와 메타데이터 구축에 나선다고 20일 밝혔다.
문화기술대학원 박주용(과제총괄책임), 이원재, 노준용 교수 연구팀이 주도하는 컨소시엄은 인공지능을 이용해 영상 정보 추출과 편집을 손쉽게 하는 기술 개발에 착수했다. 이와 함께 수행기관인 KBS가 보유한 방대한 뉴스 영상 데이터를 결합해 포스트 코로나 시대 인공지능 기반 영상 콘텐츠 산업 창출에 적극적으로 나설 계획이라고 밝혔다.
현재 인공지능은 질병 진단과 자율운전 등 인간의 기계적인 움직임과 판단력을 보완하는 영역을 벗어나 미디어 콘텐츠 제작과 같은 창의적 분야까지 급속히 확장하고 있다. 하지만 비전문가 누구라도 말을 통해 손쉽게 콘텐츠를 만들고 편집할 수 있게 하는 인공지능 기술은 아직 많은 발전이 필요하며 우리나라에서는 특히 한국어 기반 데이터 세트의 부족이 큰 걸림돌이 되고 있다고 전문가들은 입을 모으고 있다.
우리 대학은 KBS와 함께 인공지능 모델 학습을 위한 고품질의 영상 데이터를 구축하고 ‘한국형 뉴스 영상 메타데이터 표준 모델’ 개발을 목표로 하고 있다. 메타데이터 기반 공공개방형 뉴스 아카이브 분야는 현재 미국의 AP와 영국의 BBC가 주도하고 있는데, 박주용 교수는 “이 프로젝트를 통해 저작권 문제와 범용성 메타데이터의 부족으로 연구 개발에 어려움을 겪던 연구자들과 관련 스타트업들의 숨통이 트일 것으로 기대한다”며 “더 나아가 한국형 콘텐츠 플랫폼의 틀을 다지게 될 것”이라고 밝혔다.
< 인공지능 학습용 데이터 구축 예시1 >
< 인공지능 학습용 데이터 구축 예시2 >
과기정통부(장관 임혜숙)와 한국지능정보사회진흥원(원장 문용식)의 `2021년도 인공지능 학습용 데이터 구축' 사업 예산 및 KAIST가 주도하는 컨소시엄의 민간투자금 등 모두 42억 원의 재원으로 운용되는 이 과제는 우리 대학 문화기술대학원이 주관하고 KBS, 메트릭스리서치(대표 나윤정), 액션파워(공동대표 조홍식/이지화), 소리자바(대표이사 안상현), 데이터메이커(대표이사 김태헌), 미소정보기술(대표이사 안동욱), 인터마인즈(대표이사 김종진)가 공동연구기관으로 참여한다. 이 프로젝트에서 개발되는 데이터베이스, 인공지능 학습모델, 프로그래밍 코드 등 모든 연구 결과는 공공재이기 때문에 누구나 연구와 사업에 사용할 수 있다.
< 응용 서비스 예시 >
우리 대학 산업디자인학과 여남규, 오세준, 주하진, 한승희 학생으로 구성된 '루시' 팀이 지난 7월 11일~12일 대전 디자인진흥원 'AI 크리에이티브 챌린지'에서 대상을 수상했다. 산업통상자원부의 지역디자인산업진흥사업 일환으로 진행된 이번 행사에는 대전 지역 6개 대학(목원대·배재대·충남대·한남대·한밭대·KAIST)에서 총 17개 팀 60여 명이 참가하여, ‘바이오헬스’, '첨단반도체', ‘지능형 모빌리티’ 등 지역 특화 기술을 접목한 디자인 솔루션을 완성했다. 참가자들은 아이디어 구상에서 프로토타입 제작, 최종 발표까지 전 과정을 직접 수행하며 실전 경험을 쌓았으며, 삼성전자 고성찬 디자이너· 우리 대학 산업디자인학과 박현준 교수·김은영 홍익대학교 교수가 실무 관점의 조언과 피드백을, 송봉규 BKID 대표·김기현 한국예술종합
2025-07-16자동차와 기계 부품 등에 사용되는 강철 합금은 일반적으로 고온에서 녹이는(융해) 공정을 거쳐 제조된다. 이때 성분이 변하지 않고 그대로 녹는 현상을 ‘합치 융해(congruent melting)’라고 한다. 우리 연구진은 이처럼 고온 실험을 통해서만 가능했던 합금의 융해 특성을 인공지능(AI)으로 해결했다. 이번 연구는 고질적인 난제였던 합금이 녹을 때 서로 얼마나 잘 섞이는지를 미리 예측함으로써, 미래 합금 개발의 방향성을 제시한다는 점에서 주목받고 있다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 노스웨스턴대 크리스 울버튼(Chris Wolverton) 교수팀과 국제 공동연구를 통해, 밀도범함수이론(DFT)* 기반의 형성에너지(합금이 얼마나 안정적인지를 나타내는 값) 데이터를 활용해 합금이 녹을 때 성분이 유지되는지를 예측하는 고정확도 머신러닝 모델을 개발했다고 14일 밝혔다. *밀도범함수이론(Density Functional Theory,
2025-07-14‘음향 분리 및 분류 기술’은 드론, 공장 배관, 국경 감시 시스템 등에서 이상 음향을 조기에 탐지하거나, AR/VR 콘텐츠 제작 시 공간 음향(Spatial Audio)을 음원별로 분리해 편집할 수 있도록 하는 차세대 인공지능(AI) 핵심 기술이다. 우리 대학 전기및전자공학부 최정우 교수 연구팀이 세계 최고 권위의 음향 탐지 및 분석 대회인 ‘IEEE DCASE 챌린지 2025’에서 ‘공간 의미 기반 음향 장면 분할(Spatial Semantic Segmentation of Sound Scenes)’ 분야에서 우승을 차지했다고 11일 밝혔다. 이번 대회에서 연구팀은 전 세계 86개 참가팀과 총 6개 분야에서 경쟁 끝에 최초 참가임에도 세계 1위 성과를 거두었다. KAIST 최정우 교수 연구팀은 이동헌 박사, 권영후 석박통합과정생, 김도환 석사과정생으로 구성되었다. 연구팀이 참가한 ‘공간 의미 기
2025-07-11우리 대학 과학기술정책대학원 최문정 교수가 유엔(UN) 산하 국제전기통신연합(ITU, International Telecommunication Union)*에서 주관하는 『AI 포 굿 글로벌 서밋(AI for Good Global Summit)』의 ‘사회적 가치를 위한 혁신(Innovate for Impact)’ 자문위원으로 선임되었다고 8일 밝혔다. *ITU(International Telecommunication Union): 정보통신기술(ICT) 분야에서 가장 오랜 역사를 가진 유엔(UN) 전문기구로, 전 세계 ICT 정책과 표준을 조율하는 핵심 기관이다. 이번 위원회는 인공지능(AI)의 사회적 가치 실현과 지속가능한 발전을 위한 글로벌 협력 방안을 모색하기 위해 구성되었으며, 전 세계 각지의 전문가들이 위원으로 참여한다. AI 포 굿 글로벌 서밋은 7월 8일부터 11일까지 스위스 제네바에서 열리며, ITU가 주관하고 약 40여 개의 유엔 산
2025-07-08오픈AI 챗GPT4, 구글 Gemnini 2.5 등 최신 생성형AI 모델들은 높은 메모리 대역폭(Bandwidth) 뿐만 아니라 많은 메모리 용량(Capacity)를 필요로 한다. 마이크로소프트, 구글 등 생성형AI 클라우드 운영 기업들이 엔비디아 GPU를 수십만 장씩 구매하는 이유다. 이런 고성능 AI 인프라 구축의 핵심 난제를 해소할 방안으로, 한국 연구진이 최신 GPU 대비 약 44% 낮은 전력 소모에도 평균 60% 이상 생성형 AI 모델의 추론 성능을 향상할 NPU(신경망처리장치)* 핵심 기술을 개발하는데 성공했다. *NPU(Neural Processing Unit): 인공신경망(Neural Network)을 빠르게 처리하기 위해 만든 AI 전용 반도체 칩 우리 대학 전산학부 박종세 교수 연구팀과 (주)하이퍼엑셀(전기및전자공학부 김주영 교수 창업기업)이 연구 협력을 통해, 챗GPT와 같은 생성형AI 클라우드에 특화된 고성능·저전력의 NPU(신경망처리장치)
2025-07-04