KAIST 연구진이 대장조직에 숨겨진 암발생 억제 메커니즘을 규명해냈다. 대장조직에 내재된 방어 메커니즘이 밝혀짐에 따라 대장암 발병에 대한 이해를 돕는 계기가 될 것으로 기대된다.
우리 학교 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 송제훈 박사과정 연구원(제1저자)이 참여하였으며, 영국 암연구소 오웬 삼손 박사와 데이비드 휴웰, 레이첼 리지웨이, 아일랜드 연구소 보리스 콜로덴코, 월터 콜치 박사가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었고 연구결과는 셀(Cell) 자매지 셀 리포트(Cell Reports)지 온라인판 3월 28일자에 게재되었다.
* 논문명 : The APC network regulates the removal of mutated cells from colonic crypts
생명체는 손상된 조직을 스스로 복구할 수 있지만 복구를 위한 세포분열 과정에서 암을 일으킬 수 있는 유전자 변이가 생길 수 있다. 이는 빠른 세포분열 속도와 소화과정에서의 독성물질 때문에 유전자 변이 확률이 높은 대장의 장샘*에서 특히 문제가 된다.
* 장샘(crypt) : 대장 표면을 형성하는 약 2000여개의 세포로 구성된 동굴모양의 상피 연구팀은 유전자 변이로 발암 가능성이 높아진 세포를 대장의 장샘에서 빨리 내보내는 방식으로 대장조직이 빠르고 빈번한 조직재생과정에서 암 발생을 억제한다는 것을 알아냈다. 변이된 세포의 장샘 체류시간을 줄여 비정상적 세포분열을 억제하는 방어 메커니즘이 대장에 내재되어 있다는 것이다.
수학모델을 만들고 이에 대한 방대한 컴퓨터 시뮬레이션 분석을 수행한 결과 유전자 변이에 의해 윈트신호전달*이 강화된 변이세포는 정상세포에 비해 접착력이 높아지면서 장샘의 위쪽으로 더욱 빠르게 이동, 장샘을 벗어나 장내로 배출되기 쉬운 것으로 나타났다.
* 윈트 신호전달(Wnt Signaling) : 세포의 증식과 분화에 관여하는 신호전달 경로로 배아발달이나 성체조직의 항상성 관리에 특히 중요하다. 세포 외부에서 윈트 신호가 들어오면 베타 카테닌을 분해시켜 농도를 낮게 유지해 주는 분해복합체가 억제되면서 세포증식을 돕는 표적 유전자들이 발현되어 세포증식이 일어나게 된다.
유전자 변이로 윈트 신호전달회로의 핵심인자인 베타 카테닌이 분해되지 못하면 축적된 베타 카테닌이 세포증식을 활성화시키는 한편세포 접착력을 높이게 되는데, 장샘 조직의 특수한 환경과 비슷한 접착력을 가진 세포들이 모이려는 성질로 인해 결국 변이된 세포를 배출시켜 조직의 항상성을 유지한다는 것이다.
실제 생쥐모델에서도 비정상적인 장샘 조직의 경우 증식이 활발한 세포가 오히려 느리게 이동하는 것으로 나타나 이같은 시뮬레이션 결과를 확인할 수 있었다.
조 교수는 “본 연구는 컴퓨터 시뮬레이션으로 다세포 생명체가 비정상적 세포 변이에도 불구하고 조직의 항상성을 유지하도록 정교하게 설계되어 있음을 규명한 것으로 IT와 BT의 융합연구인 시스템생물학 연구를 통해 복잡한 생명현상의 숨겨진 원리를 파악할 수 있음을 보인 것” 이라고 밝혔다.
이 연구를 통해 대장의 장샘조직이 조직 내 암의 진화를 애초에 억제할 수 있는 메커니즘을 내재하고 있다는 놀라운 사실을 밝힘으로써 대장암 발생에 대한 이해를 한 단계 높이게 되었다. 또한 이번 연구결과는 대장암을 치료하기 위한 신약개발의 개발 방향에 대한 새로운 통찰을 제시하였다
주요그림 1 설명.
연구개요 모식도: 세포의 자가복구는 다세포생명체가 손상된 조직을 재생하기 위한 필수적인 과정이지만동시에 암을 일으킬 수 있는 체세포 변이의 위험성을 수반한다. 그렇다면 어떻게 이런 딜레마가 생체조직 내에서 해결될 수 있는 것인가?
이 문제는 재생속도가 빠르고 다양한 변이인자에 노출이 많은 대장조직에서 특히 중요하다. 연구팀은 대장 장샘의 세포증식과 이동에 관한 수학모델의 대규모 컴퓨터시뮬레이션과 생물학 시험을 결합한 시스템생물학(Systems Biology) 연구를 통해 그 분자적 메커니즘을 최초로 규명하였다.
장샘 조직 상단으로 이동하는 단일세포의 동역학 특성을 분석함으로써 암의 발생을 방지하는 장샘의 숨겨진 메커니즘을 밝힌 것이다. 그림은 실험용 생쥐에서 추출한 대장조직의 현미경 사진 위에 규명한 메커니즘을 그림으로 도식화 한 것이다.
주요그림 2 설명.
컴퓨터시뮬레이션 결과와 동물모델 실험을 통한 검증: (A) 야생형 장샘(첫째 행) 및 에이피시 유전자 변이된 장샘(둘째 행), 베타카테닌 유전자 변이된 장샘(셋째 행)에서, 이질적 세포군집에 의한 세포 재배치의 효과를 조사하는 컴퓨터 시뮬레이션이 수행되었다. 여기서 이질성은 균등하게 취해진 100개의 표본세포(첫째와 둘째 열)에 대해서 가해진 랜덤 노이즈를 노이즈가 없는 기준 분자 프로파일(파랑 파선)에 추가함으로써 모사된다. 표본세포들의 초기위치들은 세포 재배치에 의해서 최종위치로 변경된다. 이러한 세포재배치가 가져오는 윈트신호전달 및 세포접착의 분포(셋째와 네째 열)가 변화되는 양상이 조사되었다. 빨강 점 및 초록 점들은 기준 분자 프로파일에 대한 양과 음의 편차를 각각 가리키고, 빨강 및 초록 화살표들은 빨강과 초록 점들의 이동 방향을 각각 가리킨다. (B,C) 동형 에이피시 유전자 변이와 동형 및 이형 베타카테닌 변이들을 가지도록 유전자 조작된 생체모델(실험용 마우스)을 사용하였다(B,C). APCfl/fl(동형) 및 β-cateninexon3/+(이형), β-cateninexon3/exon3(동형) 유전자변이 실험용 마우스 (B, 첫째 행)의 대장 조직에 대해서, BrDU주입 후 2시간 이후에 BrDU 양성으로 마크된 세포들은 장샘의 증식영역(주로 아랫부분)에 한정된다. BrDU 주입 후 48시간 이후 장샘의 BrDU양성 세포들은 장샘의 윗쪽 방향으로 이동하였음을 가리킨다(B, 둘째 열). 에이피시 유전자 변이의 경우에는 동형 변이를 가진 생체모델이 사용되었다 (C, 둘째 열). 베타카테닌 변이의 경우에는 이형 변이(C, 셋째 열) 및 동형 변이(C, 넷째 열)를 가진 생체모델이 사용되었다. 본 연구팀은 BrDU 주입 후 2시간 및 48시간 후 BrDU가 마크된 세포들을 관측하였다. BrDU가 주입 후 2시간 이전에 DNA내에 포함되어지기 때문에 2시간에서의 BrDU마크는 증식영역의 위치를 가리킨다. BrDU 주입 후 48시간에서 장샘 내 세포의 이동과 증식이 관찰되었다. 본 연구팀은 증식성 세포들의 위치와 개수를 정량화하였고(C, 좌측) BrDU 표식 된 세포군집의 이동을 측정하기 위하여 누적빈도를 계산하였다(C, 우측). (C)의 화살표는 BrDU 표식된 세포군집의 이동거리를 가리킨다. 표본 마우스마다 50개의 ½장샘이 기록되었는데, 여기서 유전자 형마다 적어도 3개의 다른 실험용 마우스가 사용되었다.
우리 몸의 세포는 평생 동안 DNA 돌연변이를 지속적으로 축적하며, 이는 세포 간의 유전적 다양성(모자이시즘) 및 세포 노화를 초래한다. 한국 연구진이 세포소기관 미토콘드리아 DNA의 인체 내 모자이시즘 현상을 최초로 규명했다. 우리 대학 의과학대학원 주영석 교수 연구팀 안지송 박사과정이 미토콘드리아 DNA 돌연변이 연구를 주도해 국제 과학학술지 ‘네이처 지네틱스(Nature Genetics)’ 7월 22일 字 온라인판에 게재했다고 24일 밝혔다. (논문명: Mitochondrial DNA mosaicism in normal human somatic cells). 이번 연구에는 서울대학교 의과대학, 연세대학교 의과대학, 고려대학교 의과대학, 국립암센터, 그리고 KAIST 교원창업기업 이노크라스의 연구자들도 참여했다. 미토콘드리아는 세포 에너지 대사 및 사멸에 관여하는 세포소기관으로, 세포핵과 독립적으로 자체 DNA를 가지고 있으며 돌연변이도
2024-07-24뇌를 포함한 모든 신체 기관은 세포 분열 과정에서 발생하는 돌연변이(모자이시즘)을 피할 수 없다. 그렇다면 과연 몇 개의 신경세포에 질병 유발 돌연변이가 생겨났을 때부터 전체 뇌신경 회로를 망가트려 뇌 기능 이상을 일으킬 수 있을까? 우리 대학 의과학대학원 이정호 교수팀이 뇌세포 특이적 돌연변이(뇌 체성 모자이시즘)에 의한 소아 난치성 뇌전증 동물 모델과 환자 뇌 조직 연구를 통해 0.1퍼센트 이하 비율의 극미량 돌연변이 신경세포에 의해서도 뇌 전체 기능 이상을 유발해 뇌전증 발작이 발생할 수 있음을 규명했다고 9일 밝혔다. 이를 통해 난치성 뇌전증의 돌연변이 유전자 진단에 있어 새로운 기준을 마련하는 한편, 극미량의 돌연변이 신경세포가 다양한 뇌 질환 유발에 관여할 수 있음을 밝혔다. 이번 연구의 결과는 세계적 신경 의학 학술지 `브레인(Brain)'에 지난 6월 25일 字 게재됐다. 연구팀은 이번 연구에서 과연 얼마나 적은 수의 세포에서 특정 유전자 모자이시즘이 누
2024-07-09지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다. 조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델
2024-06-03구성원들 사이의 활발한 교류로 결속력이 높은 사회적 커뮤니티가 건강한 개인을 만들 듯, 유전자 커뮤니티의 결속력도 개인의 건강 상태에 영향을 미칠 수 있을까? 한국 연구진이 유전자 커뮤니티의 결속력 또한 개인의 건강 상태를 결정하고 환자 맞춤형 의료를 위해 활용될 수 있음을 보여 화제다. 우리 대학 바이오및뇌공학과 이도헌 교수 연구팀이 개인화된 유전자 네트워크에서 환자 특이적으로 결속력이 약화된 유전자 커뮤니티를 찾아내 환자 맞춤형으로 약물 표적을 예측할 수 있는 기술을 개발했다고 23일 밝혔다. 최근 고령화와 생활 습관 변화 등에 따라 암, 심혈관계 질환, 대사 질환 등 많은 복합질병의 발병률이 크게 증가하는 실정이다. 이에 전문가들은 개별 환자의 특성을 고려한 ‘환자 맞춤형 의료’를 제공해 그 치료 효과를 높임으로써 개인적, 사회적 의료비 부담을 경감해야 한다고 지적한다. 이도헌 교수 연구팀은 이러한 요구에 발맞춰 개인화된 유전자 네트워크를 정
2024-04-23최근 크리스퍼(유전자 가위) 기술을 활용한 유전자 교정 치료제 연구가 활발하다. 기존 화학적 항암치료제와는 달리 크리스퍼 기술 기반 유전자 교정 치료제는 질병 표적 유전자를 영구적으로 교정할 수 있어 암 및 유전 질환 치료제로 각광받고 있지만, 생체 내에서 암 조직으로 낮은 전달 효율과 낮은 효능으로 어려움을 겪고 있다. 우리 대학 생명과학과 정현정 교수 연구팀이 크리스퍼 기반 표적 치료제로 항체를 이용한 크리스퍼 단백질을 생체 내 표적 조직에 특이적으로 전달하는 항암 신약을 개발해 암세포 선택적 유전자 교정 및 항암 효능을 보였다고 8일 밝혔다. 유전자 치료에 사용하는 바이러스 기반 전달 방법은 인체 내 면역 부작용, 발암성 등 한계점을 가지고 있다. 이에 선호되는 비 바이러스성 전달 방법으로 단백질 기반의 크리스퍼 기술 전달은 본래의 표적과는 다른 분자를 저해 혹은 활성화하는 효과를 가져오는 오프타깃 효과가 최소화되며 보다 높은 안전성으로 치료제로서 개발이 적합하다.
2024-04-08