< (왼쪽부터) 생명과학과 한진희 교수, 정이레 박사 >
우리 대학 생명과학과 한진희 교수 연구팀이 무수히 많은 뉴런과 이들 사이의 시냅스 연결로 구성된 복잡한 신경 네트워크에서 기억을 인코딩하는 뉴런이 선택되는 근본 원리를 규명했다고 13일 밝혔다.
우리 대학 생명과학과 정이레 박사가 제1 저자로 참여한 이번 연구는 네이처 출판 그룹의 오픈 액세스(Open-access) 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 24일 字로 게재됐다. (논문명: Synaptic plasticity-dependent competition rule influences memory formation)
과거의 경험은 기억이라는 형태로 뇌에 저장되고 나중에 불러오게 된다. 이러한 기억은 뇌 전체에 걸쳐 극히 적은 수의 뉴런들에 인코딩되고 저장된다고 알려져 있다. 하지만 이 뉴런들이 미리 정해져 있는 것인지, 아니면 어떤 원리에 의해 선택되는 것인지는 불확실하다. 이 질문을 해결하는 것은 신경과학의 미해결 난제 중 하나인 기억이 뇌에서 어떻게 형성되는지를 규명하는 것으로서 학문적으로 매우 중요할 뿐만 아니라, 치매를 치료할 수 있는 단서를 제공하기 때문에 막대한 사회, 경제적 파급 효과가 있다.
반세기 훨씬 이전에 캐나다의 신경심리학자 도널드 올딩 헤브(Donald O. Hebb)는 그의 유명한 저서인 ‘행동의 조직화(The Organization of Behavior)’ (1949) 에서 두 뉴런이 시간상으로 동시에 활성화되면 이 두 뉴런 사이의 시냅스 연결이 강화될 것이라는 시냅스 가소성(synaptic plasticity) 아이디어를 제시했고, 이후 실험을 통해 학습으로 특정 시냅스에서 실제로 장기 강화(long-term potentiation, 이하 LTP)가 일어난다는 것이 증명됐다.
이 발견 이후, LTP가 기억의 핵심 메커니즘으로 생각돼 왔다. 하지만, LTP가 기억을 인코딩하는 뉴런을 어떻게 결정하는지 지금까지 규명된 적이 없었다.
이번 연구에서는 이를 규명하기 위해 생쥐 뇌 편도체(amygdala) 부위에서 자연적인 학습 조건에서 LTP가 발생하지 않는 시냅스를 광유전학 기술을 이용해서 특정 패턴으로 자극함으로써 인위적으로 그 시냅스 연결을 강하게 만들거나 혹은 약하게 조작하고 이때 기억을 인코딩하는 뉴런이 달라지는지 연구팀은 조사했다.
먼저, 생쥐가 공포스러운 경험을 하기 전에 이 시냅스를 미리 자극해서 LTP가 일어나게 했을 때, 원래는 기억과 상관없었던 이 시냅스에 기억이 인코딩되고 LTP가 일어난 뉴런이 주변 다른 뉴런에 비해 매우 높은 확률로 선택적으로 기억 인코딩에 참여함을 발견했다.
하지만, 학습하고 난 바로 직후에 이 시냅스를 다시 광유전학 기술로 인위적으로 자극해서 이 시냅스 연결을 약하게 했을 때 더는 이 시냅스와 뉴런에 기억이 인코딩되지 않는 결과를 얻었다.
반대로, 정상적으로 생쥐가 공포스러운 경험을 하고 난 바로 직후에 LTP 자극을 통해 이 시냅스 연결을 인위적으로 강하게 했을 때 놀랍게도 LTP를 조작해준 이 시냅스에 공포 기억이 인코딩되고 주변 다른 뉴런들에 비해 LTP를 발생시킨 이 뉴런에 선택적으로 인코딩됨을 확인했다. 이러한 결과는 시냅스 강도를 인위적으로 조작했을 때 기억 자체는 변하지 않지만, 그 기억을 인코딩하는 뉴런이 변경됨을 증명한 것이다.
< 그림 1. 시냅스 강도 조절 메커니즘에 의한 기억 저장 뉴런 선택 >
< 그림 2. 강하게 서로 연결된 뉴런 집합체 형성을 통한 기억형성 >
한진희 교수는 “LTP에 의해 뉴런들 사이에서 새로운 연결패턴이 만들어지고 이를 통해 경험과 연관된 특이적인 세포 집합체(cell assembly)가 뇌에서 새롭게 만들어진다”며 “이렇게 강하게 서로 연결된 뉴런들의 형성이 뇌에서 기억이 형성되는 원리임을 규명한 것”이라고 이번 연구 결과중요성을 설명했다.
한편, 이번 연구는 한국연구재단의 중견연구 사업 지원을 받아 수행되었으며 정이레 박사는 한국연구재단의 박사 후 국내 연수 사업의 지원을 받았다.
우리 대학 전기및전자공학부 최양규 교수 연구팀이 지난 2021년 8월에 뉴런과 시냅스를 동일 평면 위에서 동시 집적으로 ‘인간의 뇌를 모방한 뉴로모픽 반도체 모듈’을 개발하고, 연이어서 이번에는 ‘인간의 촉각 뉴런을 모방한 뉴로모픽 모듈’을 개발하는 데에 성공했다고 24일 밝혔다. 개발된 모듈은 인간의 촉각 뉴런과 같이 압력을 인식해 스파이크 신호를 출력할 수 있어, 뉴로모픽 촉각 인식 시스템을 구현할 수 있다. 우리 대학 전기및전자공학부 한준규 박사과정과 초일웅 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2022년 1월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Self-powered Artificial Mechanoreceptor based on Triboelectrification f
2022-02-25수학과 실험을 결합한 융합연구를 통해 생체시계가 안정적 리듬을 유지하면서도 환경변화에 쉽게 적응할 수 있는 원리가 밝혀졌다. 우리 대학 수리과학과 김재경 교수가 이끄는 기초과학연구원(IBS) 수리 및 계산과학 연구단 의생명 수학 그룹과 우리 대학 수리과학과 연구팀, 그리고 아주대 의과대학 뇌과학과 김은영 교수 연구팀은 공동연구를 통해 초파리 뇌의 생체시계 뉴런들의 생체시계 작동원리를 분석했다. 생체시계(Circadian clock)는 생명체가 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 예를 들어, 생체시계는 밤 9시경이 되면 뇌에서 멜라토닌 호르몬 분비를 유발해 일정 시간이 되면 수면을 취할 수 있도록 하는 등 우리 운동 능력이나 학습 능력에 이르는 거의 모든 생리 작용에 관여한다. 따라서, 평소에는 일정한 시간을 안정적으로 몸에 제시하면서, 동시에 계절 변화에 따른 낮밤의 길이 변화나 해외여행으로 인한 시차 등 환경변화가 생겼을 때는 새
2022-02-16우리 대학 전기및전자공학부 최신현 교수 연구팀이 다공성 구조를 갖는 *차세대 저항 변화 소자(멤리스터)를 활용해 우리 뇌의 신경전달물질 시냅스를 모방한 고신뢰성 소자(시냅스 소자)를 개발했다고 25일 밝혔다. ☞ 멤리스터(Memristor): 메모리와 레지스터의 합성으로 이전의 상태를 모두 기억하는 메모리 소자. 전원공급이 끊어졌을 때도 직전에 통과한 전류의 방향과 양을 기억한다. 최 교수 연구팀은 기존 양이온 저항 변화 방식과 음이온 저항 변화 방식을 혼합한 하이브리드 형태로 매개체를 구성해, 비정질로 이루어진 다공성 구조 및 버퍼 층을 이용해 고신뢰성 시냅스 소자를 설계했다. 해당 구조는 저온 공정을 통해 형성함으로써 기존 실리콘 상보형 산화금속 반도체(CMOS)에 집적 및 적층 가능해 집적도 높은 대용량 로직/인공신경망 컴퓨팅 시스템 제작에 활발히 응용될 수 있을 것으로 기대된다. 우리 대학 최상현 연구원과 박시온 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학
2022-01-25우리 대학 생명과학과 한진희 교수 연구팀이 살아있는 생쥐 뇌에서 기억저장 뉴런(신경 세포)을 표지하고 추적, 관찰할 수 있는 기술을 이용해 같은 경험을 다시 할 때 원래 존재하던 오래된 기억 뉴런이 새로운 뉴런으로 교체됨을 규명했다고 3일 밝혔다. 연구팀은 `뉴런 스위칭'을 가능하게 하는 기작으로 기초과학연구원(IBS) 김은준 교수 연구팀과의 공동연구를 통해 이전에 경험했던 학습을 다시 하면 기존 기억 뉴런에서 시냅스 연결이 감소하는 반면, 새로 참여하는 뉴런에서는 시냅스 연결이 증가함을 규명했다. 이번 연구는 같은 기억은 같은 뉴런에 계속 저장됨으로써 경험이 누적될 수 있을 것이라는 기존의 통념과 달리, 같은 경험을 다시 할 때 뇌에서 오히려 뉴런들이 다이내믹하게 새로 교체됨을 처음으로 증명했다는 점에서 기존의 패러다임을 전환하는 중요한 학문적 의미가 있다. 뉴런 교체는 기억 업데이트의 중요한 기작으로 생각되며 노화, 퇴행성 뇌질환에서 기억상실을 해결할 수 있는 기술
2021-11-03우리 대학 전기및전자공학부 최양규, 최성율 교수 공동연구팀이 인간의 뇌를 모방한 고집적 뉴로모픽 반도체를 개발했다고 5일 밝혔다. 뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 공동연구팀은 단일 트랜지스터를 이용해 인간의 뇌를 모방한 뉴런과 시냅스로 구성된 뉴로모픽 반도체를 구현했다. 이 반도체는 상용화된 실리콘 표준 공정으로 제작되어, 뉴로모픽 하드웨어 시스템의 상용화 가능성을 획기적으로 높였다. 우리 대학 전기및전자공학부 한준규 박사과정이 제1 저자로, 같은 학부 오정엽 박사과정이 제2 저자로 참여한 이번 연구는 저명 국제 학술지 `사이언스 어드벤시스(S
2021-08-06