< (왼쪽부터) 신소재공학과 홍승범 교수, 박건 박사과정 >
오늘날 리튬이온전지는 휴대용 전자 장비와 전기차를 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 폭발적인 수요에 발맞춰 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 가속화되고 있다.
그러나 기존의 전기화학 특성 평가 방법은 소재 혹은 소자 특성의 평균값을 측정하는 것에 집중되어 있기에, 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기에는 충분하지 않다. 따라서 전기화학 특성에 대한 통합적인 이해를 위해 미시적 수준에서 공간 분해능을 가진 분석 기술의 개발은 필수적이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경(Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다.
전기화학 변위 현미경은 나노 크기의 탐침에 전압을 가했을 때, 이온의 이동이 유발하는 시료 표면의 변형(displacement)을 측정하는 기술로서 이 변형을 발생시킨 이온의 양과 이온의 이동도 등을 간접적으로 측정할 수 있게 도와주는 기술이다.
홍 교수 연구팀은 비행시간형 2차 이온 질량 분석법(Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정량적으로 계산하고, 전기화학 변위 현미경 결과와의 캘리브레이션(calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다.
이후, 연구진에 의해 고안된 직류 전압 펄스(pulse)를 시료의 깊이에 따라 가했으며, 전기장에 의해 표면으로 이동했다가 다시 내부 쪽으로 확산하는 이온을 전기화학 변위 현미경으로 영상화했다. 특히, 해당 펄스를 설계하는 과정에서 기존 전기화학 변위 현미경 사용에 대한 오류를 지적하고, 개선된 사용 방법에 대해 안내했다. 그 결과, 연구팀은 시간 및 거리의 함수로 이온의 이동 과정을 영상화하는 데 성공했으며, 이 결과를 이용해 깊이 및 이온의 농도에 따라 변화하는 확산계수 값을 정량적으로 보여줬다.
< 그림 1. (a) 시료 깊이에 따라 가해진 삼각 직류 펄스와 펄스 종료 직후, 이온의 거동을 보여주는 전기화학 변위 현미경 결과, (b) 비행시간형 2차 이온 질량 분석법 및 유도결합 플라즈마 분광분석기 결과와 전기화학 변위 현미경 결과의 상관관계 분석. >
< 그림 2. (a) 시간과 거리에 따른 전기화학 변위 현미경 결과, (b) 깊이에 따른 이온 확산계수 계산 결과. >
홍승범 교수는 "이온의 움직임을 나노미터 수준에서 정량적으로 관찰할 수 있는 방법론이 다양한 이온 거동의 메커니즘을 규명하는데 기여할 것ˮ이라며, "추후 다양한 실제 소자 구동 환경을 모사한 상태에서 이번 방법론을 적용하는 후속 연구를 진행할 것ˮ이라고 설명했다.
우리 대학 신소재공학과 박건 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte)
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
그린수소는 풍력, 태양광등 재생에너지를 이용하여 생산과정에서 이산화탄소 배출이 전혀 없는 궁극적인 청정 에너지원으로 각광을 받고 있다. 이러한 그린수소를 활용/생산하는 연료전지, 수전해 전지, 촉매 분야에 산소 이온성 고체전해질이 널리 사용되고 있다. 이러한 산소 이온 전도체들은 주로 700oC 이상의 고온에서 활용되는데 이 때문에 소자 내의 다른 요소들과의 바람직하지 않은 화학반응, 소재 응집, 열충격이 발생하거나 높은 유지비용이 요구되는 등의 문제가 발생하고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 미국 메릴랜드 대학 에릭 왁스만(Eric Wachsman) 교수 연구팀과 공동연구를 통해 기존 소재 대비 전도성이 140배 높은 산소 이온 전도성 고체전해질 개발에 성공했다고 22일 밝혔다. 개발된 신소재는 비스무트 산화물 기반으로 400oC에서 기존 지르코니아 소재의 700oC에 해당하는 높은 전도성을 보이며 중저온(600oC) 영역대에서 140배 이상 높은 이
2023-11-22반도체 공정기술을 활용하여 세계 최고 수준의 높은 수소 생산 효율을 장기간 유지하는 기술이 개발되어 화제다. 우리 대학 신소재공학과 정연식 교수·KIST(원장 윤석진) 김진영 박사·김동훈 박사 공동 연구팀이 수소 생산 촉매가 반응 중 잃어버리는 전자를 신개념 산화물 반도체로부터 보충받는 새로운 원리를 활용해 고효율 및 고내구성 수소 생산 기술을 개발했다고 25일 밝혔다. 고순도 그린 수소를 생산하기 위해 신재생에너지로 물을 전기분해하는 친환경적인 고분자 전해질막 수전해(PEMWE) 장치를 활용하게 된다. 이때 주로 사용되는 이리듐(Ir) 촉매의 경우 전자를 많이 가지고 있는 상태를 지속적으로 유지해야 고효율과 고내구성을 동시에 달성할 수 있게 된다. 하지만 일반적으로 쉽게 전자를 잃어버리고 산화되는 촉매 반응의 특성 때문에 효율과 수명이 현저히 저하되는 고질적인 문제가 있었다. KAIST-KIST 공동 연구팀은 초미세 패턴을 적층하여 3차원
2023-09-25김범준 생명화학공학과 교수가 우리 대학인 주관하고 현우문화재단(이사장 곽수일, 서울대학교 경영대학 명예교수)이 후원하는 `현우 KAIST 학술상' 수상자로 선정됐다. 시상식은 이달 16일 오전 10시 KAIST 학술문화관 정근모 홀, 리서치데이 행사에서 개최된다. 올해로 3회째 시행되는 `현우 KAIST 학술상'은 현우문화재단 곽수일 이사장이 KAIST에서 우수한 학술적 업적을 남긴 학자들을 매년 포상하고자 기부한 재원을 통해 제정된 상이다. 우리 대학은 현우재단 선정위원과 KAIST 교원포상추천위원회의 엄격한 심사를 거쳐 KAIST를 대표할 수 있는 탁월한 학술 업적을 이룬 교원을 매년 1명 선정해 상패와 포상금 1,000만원을 시상할 계획이다. 올해의 수상자로 선정된 김 교수는 고무처럼 늘어나면서도 이온 전달 특성이 매우 우수한 새로운 개념의 고분자 전해질 소재를 개발했고, 이를 이용해서 세계 최고 수준의 성능을 가지는 전고체전지를 구현하는 데 성공했다. 본 연구는
2023-05-161회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고용량, 고에너지밀도 이차전지 개발이 필수적이다. 이에 높은 가역용량을 가지는 니켈리치 양극과 흑연보다 10배가량 높은 용량을 발현하는 실리콘 음극 물질이 차세대 리튬이온전지의 소재로 주목받고 있다. 하지만 기존 전해질 첨가제 연구는 기존 물질들의 스크리닝 기법을 통하여 시행착오를 거쳐 개발되기 때문에 시간과 비용이 많이 소모되어 신규 전극 소재에 대응하기 어려운 한계점을 보였다. 우리 대학 생명화학공학과 최남순 연구팀이 고려대 곽상규 교수팀, UNIST 홍성유 교수팀, 현대자동차, 한국화학연구원과 공동연구를 통해, 고용량 실리콘 기반 음극과 니켈리치 양극으로 구성된 리튬이온 이차전지의 상온 및 고온 장수명화를 가능하게 하는 전해질 첨가제 기술을 개발했다고 19일 밝혔다. 연구팀이 개발한 전해질 첨가제는 실리콘 기반 음극과 니켈 리치 양극의 저온, 상온 및 고온에서의 가역성을 증대시켜 배터리 충방전
2023-04-19우리 대학 생명화학공학과 이진우 교수 연구팀이 포항공과대학교 조창신 교수 연구팀과 공동연구를 통해 장수명 소듐(나트륨) 금속 음극 및 고출력 해수 전지를 위한 비불소계 전해질을 개발했다고 28일 밝혔다. 불소(F)는 전지의 전기화학적 성능을 향상시키는데 크게 기여하여 현재 상용화된 리튬-이온 전지 외에도 다양한 차세대 전지 전해질의 필수 요소로 자리매김하고 있다. 다만, 비싼 가격, 인체 및 환경에 유해하며 강한 독성이라는 문제점을 가져 이를 대체할 비불소계 전해질 (F-free electrolyte) 개발이 필수적이다. 이 교수 연구팀은 기존 불소계 전해질을 대체할 수 있는 비불소계 전해질을 설계해 매우 뛰어난 가격 경쟁력과 불소계 전해질의 전기화학적 성능을 상회하는 전기화학적 성능을 달성했다. 생명화학공학과 김진욱 박사과정, 김지오 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `에너지 인바이론멘탈 사이언스(Energy & Environment
2022-10-31