
정기훈 교수
- 광학나노안테나 접목해 테라헤르츠파 출력 최대 3배 향상시켜 -
- 내시경 등 초소형 바이오 진단시스템 등 다양한 분야 응용 기대 -
광학계의 블루오션이라 불리는 ‘테라헤르츠파’의 출력이 KAIST 연구진에 의해 크게 향상됐다. 앞으로 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있을 것으로 전망된다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했다.
테라헤르츠파는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않는다.
이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에 X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있다. 심지어 가짜약도 판별해낼 수 있다.
또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있다.
테라헤르츠파는 펨토초(10-15초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10-12초) 펄스 광전류가 흐르면서 발생된다. 그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌다.
정 교수 연구팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했다. 그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐다.
이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌다.
정기훈 교수는 “이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있다”며 “앞으로 이 같은 바이오센서 시스템을 구축해 상용화하는 데 주력할 것”이라고 말했다.
바이오 및 뇌 공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수가 공동으로 수행한 이번 연구는 나노분야 세계적 학술지 ‘ACS Nano" 3월호(27일자)에 실렸다.
한편, 이번 연구는 지식경제부 및 한국산업기술평가원의 산업융합기술/산업원천기술개발사업 및 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 수행됐다.
그림1. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지.

그림2. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다.

그림3.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.
AI가 스스로 새로운 소재의 구조와 성질을 상상하고 예측하는 시대가 열렸다. 이제 AI는 연구자의 ‘두 번째 두뇌’처럼 아이디어 발굴부터 실험 검증까지 연구 전 과정을 함께 수행한다. 우리 대학과 국제 공동 연구진은 AI가 자율 연구실(Self-driving Lab) 개념을 구현하고, 로봇이 촉매 합성 실험을 수행하는 ‘AI 기반 촉매 탐색 플랫폼’을 통해 신소재 연구의 전 주기 활용 전략을 제시했다. 우리 대학은 신소재공학과 홍승범 교수 연구팀이 미국 드렉셀대학교, 노스웨스턴대학교, 시카고대학교, 테네시대학교와 공동연구를 통해 인공지능(AI)·머신러닝(ML)·딥러닝(DL) 기술이 신소재공학 전반에 미치는 영향을 종합적으로 분석한 리뷰 논문을 국제 학술지 ACS Nano(영향력지수 IF=18.7)에 8월 5일자로 게재했다고 26일 밝혔다. 홍승범 교수 연구팀은 소재 연구를 ‘발견–개발&n
2025-10-27요즘 수소 같은 청정에너지를 더 효율적이고 저렴하게 만들기 위해, 적은 전력으로 성능이 뛰어난 촉매 재료를 빠르게 합성하는 기술이 중요한 연구 주제로 떠오르고 있다. 우리 대학 연구진은 빛을 단 0.02초 비추어 3,000 ℃의 초고온을 구현하고 수소 생산 촉매를 효율적으로 제작할 수 있는 플랫폼 기술을 개발했다. 이 덕분에 에너지는 1/1,000만 쓰고도, 수소 생산 효율은 최대 6배 높아졌다. 이번 성과는 미래 청정에너지 기술의 상용화를 앞당길 핵심 돌파구로 평가된다. 우리 대학은 10월 20일, 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 강력한 빛을 짧게 쬐어주는 것만으로 고성능 나노 신소재를 합성하는 ‘직접접촉 광열처리(Direct-contact photothermal annealing)’ 합성 플랫폼을 개발했다고 밝혔다. 연구팀은 빛을 아주 짧게(0.02초) 비추는 것만으로 순간적으로 3,000 ℃의 초고온을 만들어내
2025-10-20다성분 다공성 물질(Multivariate Porous Materials, MTV)은 일종의 ‘레고 블록 집합’과 같이 분자 수준에서 맞춤형 설계가 가능한 소재로, 원하는 구조를 자유롭게 구현할 수 있다. 이를 활용하면 에너지 저장·변환을 비롯해 다양한 응용이 가능해 환경 문제 해결과 차세대 에너지 기술 발전에 크게 기여할 수 있다. 우리 연구진은 여기에 양자컴퓨팅을 세계 최초로 도입해 복잡한 MTV 설계의 난제를 해결했으며, 이를 통해 차세대 촉매·분리막·에너지 저장 소재 개발의 혁신적 길을 열었다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 양자컴퓨터를 활용해 수백만 가지 다성분 다공성 물질(이하 MTV)의 설계 공간을 효율적으로 탐색할 수 있는 새로운 프레임워크를 개발했다고 9일 밝혔다. MTV 다공성 물질은 두 종류 이상의 유기 리간드(링커)와 금속 클러스터와 같은 빌딩 블록 물질 간의 결합을 통해 형성
2025-09-09차세대 메모리와 뉴로모픽 컴퓨팅 소자로 주목받는 ‘산화물 기반 저항 메모리(Resistive Random Access Memory, ReRAM)’는 빠른 속도와 데이터 보존 능력, 단순한 구조 덕분에 기존 메모리를 대체할 후보로 떠오르고 있다. 우리 연구진이 이 메모리 작동 원리를 밝혀내 앞으로 고성능·고신뢰성 차세대 메모리 개발에 핵심 단서를 제공할 것으로 기대된다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 신소재공학과 박상희 교수 연구팀과 협업해, 차세대 반도체 핵심 기술로 주목받는 산화물 기반 메모리의 작동 원리를 세계 최초로 정밀하게 밝혀냈다고 2일 밝혔다. 연구팀은 여러 종류의 현미경*을 하나로 결합한 ‘다중모드 주사 탐침 현미경(Multi-modal SPM)’을 활용해, 산화물 박막 내부에 전자가 흐르는 통로와 산소 이온의 움직임, 그리고 표면 전위(재료표면에 전하의 분포) 변화를 동시에 관찰하는 데 성
2025-09-02ERG(망막전위도, Electroretinography)는 망막의 기능이 정상적으로 작동하는지 측정할 수 있는 안과 진단법으로, 유전성 망막질환 진단이나 망막 기능 저하 여부 등 검사에 폭넓게 활용된다. 한국 연구진이 지금까지는 어두운 공간에 고정형 장비를 이용했던 기존 망막 진단 방식을 대체할 ‘초박막 OLED’를 탑재한 무선으로 구동되는 차세대 안과 진단 기술을 개발했다. 이번 기술은 향후 근시 치료, 안구 생체신호 분석, 증강현실(AR) 시각 전달, 광 기반 뉴로자극 등 다양한 분야로 응용이 가능할 것으로 기대된다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 서울대분당병원(원장 송정한) 우세준 교수, POSTECH(총장 김성근) 한세광 교수, ㈜ PHI 바이오메드(대표이사 한세광), 국가과학기술연구회(NST 이사장 김영식) 산하 한국전자통신연구원(ETRI, 원장 방승찬)과의 공동연구를 통해, 유기발광다이오드(OLED)를 활용한 세계 최초의 무선
2025-08-12