정기훈 교수
- 광학나노안테나 접목해 테라헤르츠파 출력 최대 3배 향상시켜 -
- 내시경 등 초소형 바이오 진단시스템 등 다양한 분야 응용 기대 -
광학계의 블루오션이라 불리는 ‘테라헤르츠파’의 출력이 KAIST 연구진에 의해 크게 향상됐다. 앞으로 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있을 것으로 전망된다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했다.
테라헤르츠파는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않는다.
이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에 X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있다. 심지어 가짜약도 판별해낼 수 있다.
또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있다.
테라헤르츠파는 펨토초(10-15초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10-12초) 펄스 광전류가 흐르면서 발생된다. 그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌다.
정 교수 연구팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했다. 그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐다.
이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌다.
정기훈 교수는 “이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있다”며 “앞으로 이 같은 바이오센서 시스템을 구축해 상용화하는 데 주력할 것”이라고 말했다.
바이오 및 뇌 공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수가 공동으로 수행한 이번 연구는 나노분야 세계적 학술지 ‘ACS Nano" 3월호(27일자)에 실렸다.
한편, 이번 연구는 지식경제부 및 한국산업기술평가원의 산업융합기술/산업원천기술개발사업 및 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 수행됐다.
그림1. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지.
그림2. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다.
그림3.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.
우리 대학 경영대학이 최근 AACSB(국제경영대학발전협의회)로부터 경영 교육 분야 국제 인증을 획득했다. 2003년 첫 인증을 받은 이후 2008년, 2014년, 2019년에 이어 올해까지 5회 연속 획득하며 국제적인 경쟁력을 다시 한번 확인했다. AACSB는 1916년 설립된 국제 인증기관으로 경영대학의 교육과정과 학생의 학업성취도 등의 교육지표를 통해 교육의 품질을 평가한다. 현재 전 세계 5%의 경영대학만이 AACSB 인증을 획득했을 정도로 기준이 엄격하다. 특히, 2020년 평가 기준이 개정된 이후 피인증기관의 지속적인 교육과정 개선 여부와 품질을 까다롭게 평가하고 있어 이번 재인증으로 우리 대학은 경영대학의 질적인 향상을 입증았다.경영대학 관계자는 "KAIST 경영대학은 실무에 즉시 적용 가능한 실용적인 커리큘럼, 아시아 1위 수준의 최고경영자과정, 우수한 교수진의 수준 높은 연구 활동을 통한 고품질 교육 등을 제공하려 노력해왔으며, 앞으로도 국제 경쟁력을 갖춘
2024-07-08우리 대학이 최근 각광 받는 뉴로모픽 컴퓨팅, 차세대 이차전지, 고효율 태양전지, 광촉매, CO2 전환 기술을 포함한 미래 유망 나노 소재의 최신 연구 동향을 알아보고 비전을 전망하는 'ACS 나노 서밋 2024를 개최했다.7월 1일부터 이틀간 대전 본원에서 열린 이번 행사에는 나노재료과학 분야의 권위 있는 학술지인 'ACS 나노'의 편집위원단 18인이 대거 참여했다. 우리 대학 신소재공학과는 2020년부터 차세대 유망 소재 분야의 세계적인 석학들을 초청해 혁신적인 성과를 공유하는 '이머징 소재 심포지엄'을 매년 개최해 국내·외 학계에서 명성을 얻어왔다. 올해는 'ACS 나노'의 서밋 행사와 협력해 유망 나노 소재 최신 연구를 생생히 전달했다. 특히, 행사 첫날인 1일 오전에는 플렉서블 및 나노바이오 소재 분야의 글로벌 석학으로 손꼽히는 시아오동 첸(Xiadong Chen) 난양공대 교수가 '고신뢰성 유연 소자 제조'를 주제로 강연했다. 이와 함께, 17
2024-07-02지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다. 세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane prote
2024-06-05기존 폐플라스틱을 화학적으로 분해해 재융합하는 해중합의 중요성이 증대하고 있다. 해중합 과정에서 환경 유해 물질을 걸러내 친환경 용기 등을 생산할 수 있기 때문이다. 폐플라스틱의 재활용을 더 가속화할 수 있도록 KAIST 연구진이 해중합 온도를 낮출 수 있는 원리를 발견했다. 우리 대학 화학과 서명은 교수 연구팀이 고분자 자기조립을 활용하여 고분자의 해중합 온도를 낮추는 방법을 개발했다고 24일 밝혔다. *중합은 간단한 분자 수준의 단량체들이 화학적 반응으로 연결되어 거대한 고분자 사슬을 형성하는 것을 말하며, 해중합은 고분자 사슬을 단량체 수준으로 분해하는 것을 말함. 기존에 고분자를 해중합하여 화학적으로 분해하는 방법은 높은 온도가 필요하여 효율성이 낮았다. 연구팀은 고분자 합성과정에서 자기조립이 일어날 때 해중합 온도가 낮아지는 것을 발견했다. 고분자가 잘 섞이지 않는 용매에서 일어나는 자기조립은 엔트로피*에 반해서 질서를 만들어내는 과정이다. 조그만한 분자 단량
2024-05-24뇌 속 뉴런은 화학적, 전기적 신호가 동시에 작동하면서 정교한 시스템을 만들어내지만 현재까지는 이러한 신호를 동시에 주고받으면서 신경의 작동 원리를 확인할 수 있는 장치가 존재하지 않았다. 한국 연구진이 화학적 신호와 전기적 신호를 양 방향적으로 주고받으며 세부적인 신호 전달 체계를 탐사할 수 있는 다기능 신경 인터페이스를 개발하여 앞으로 신경 체계 연구, 질환 연구 및 치료에 획기적인 발전을 가져올 것으로 기대한다. 우리 대학 바이오및뇌공학과 박성준 교수 연구팀이, 초소형 와이어 병합 열 인발공정(Microwire Co-drawing Thermal Drawing Process, MC-TDP)*을 통해 카본, 폴리머, 금속의 다양한 재료를 통합하여 4가지 기능성을 가진 다기능 섬유형 신경 인터페이스를 개발했다고 13일 밝혔다. ☞ 열 인발공정 : 열을 가해 큰 구조체의 복잡한 구조체를 빠른 속도로 당겨 같은 모양 및 기능을 갖춘 섬유를 뽑아내는 일 또는 가공 뇌신경 시스
2024-05-13