< 신소재공학과 이건재 교수 >
우리 대학 신소재공학과 이건재 교수와 왕희승 박사팀이 *공진형 유연 압전 음성 센서를 개발해 정확도가 높은 초고감도의 인공지능 기반 화자(話者) 식별 및 음성 보안기술을 구현했으며, 이를 스마트폰과 인공지능 스피커에 탑재해 제품화하는 데도 성공했다고 15일 밝혔다.
☞ 공진형 압전 음성 센서: 공진이란 특정 주파수 영역에서 센서가 큰 진폭으로 진동하는 현상을 말하며, 압전이란 압력을 가했을 때, 전기적인 신호가 자발적으로 생성되는 현상을 말한다. 음성에 의해 센서의 막이 진동하게 될 때, 공진 현상이 일어나 민감도 높은 전압 신호를 얻을 수 있다.
인간이 먼 거리의 소리를 인식하는 방법은 달팽이관에 있는 사다리꼴 막이 가청주파수 대역에서 수많은 공진 현상을 발생시키며 소리를 증폭하는 원리에 있다. 연구진은 이러한 원리의 효과를 극대화하기 위해 매우 얇은 유연 압전 막을 사용해 인간의 귀를 모사했고, 여러 공진 채널을 구현해 소리를 초고감도로 식별할 수 있는 공진형 음성 센서를 제작했다.
이건재 교수팀은 2018년도에 세계 최초로 공진형 유연 압전 음성 센서 개념을 제시한 데 이어, 이번 연구에서는 센서 구조에 따른 공진, 주파수, 압전 막의 역할 등을 이론적으로 밝히고 크기를 매우 소형화함과 동시에 성능이 향상된 음성 센서를 개발했다.
유연 압전 음성 센서는 원거리에서 스마트 기기들을 정확하게 제어하는 미래 사물인터넷 기술과 음성을 암호화하는 보안기술을 연결함으로써 소비자 맞춤형 서비스 제공에 크게 이바지할 것으로 전망된다.
생체 모사된 공진형 음성 센서는 신호 대 잡음비(Signal to noise ratio, SNR)가 우수해 음성인식 기능이 뛰어나고 다수 채널을 보유하기 때문에, 인공지능 음성 서비스에 적은 데이터양으로도 화자 식별 정확도를 높이는 강점이 있다.
연구팀의 음성 센서는 같은 조건에서 정전용량형 상용 마이크로폰과 성능 비교를 진행한 결과, 음성 분석 및 화자 식별에 있어 인식률을 크게 높였고 조건에 따라 오류율을 60%에서 95%까지 줄일 수 있었다.
연구팀이 개발한 시제품은 이 교수가 교원 창업한 기업인 ㈜프로닉스 社를 통해 2020년 세계 가전박람회(CES)에서 공개된 바 있으며, 현재 해당 기술은 완성도 높은 인공지능 음성 기술을 시연하며 ㈜프로닉스 미국 지사를 통해 실리콘밸리의 유수 IT 기업들과 협업도 추진하고 있다.
< 그림 1. 달팽이관 내 기저막을 모사한 모바일 압전 음성 센서의 원리 >
< 그림 2. 인공지능을 통한 화자 식별 개략도 >
< 그림 3. 스마트폰 및 인공지능 스피커에 탑재된 유연 압전 음성 센서 >
이건재 교수는 "이번에 제품화된 모바일 음성 센서는 높은 민감도를 보유하면서도 크기를 획기적으로 줄였기 때문에 미래 인공지능기술을 구동하는 핵심 센서로 적용할 수 있다ˮ며 "현재 대량생산 상용화 공정도 완성 단계에 있어 실생활에 곧 적용될 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 휴먼플러스 인공지능 센서 센터의 지원을 받아 수행됐으며, 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 2월 12일 字 게재됐다.
국내 최대의 설명가능 인공지능(XAI) 연구조직인 KAIST 설명가능 인공지능연구센터(센터장 KAIST 최재식 교수)는 11월 5일부터 22일까지 7회에 걸쳐 설명가능 인공지능 튜토리얼 시리즈를 성공적으로 개최했다. 이번 튜토리얼에는 학생, 연구자, 기업 실무자 등 누적인원 총 530여 명이 참여하여 설명가능 인공지능 기술에 대한 높은 관심과 수요를 보여주었다. 행사는 XAI의 주요 알고리즘부터 최신 연구 주제까지, 총 16개 세션 발표로 진행되었다. 개회 강연으로 ‘설명가능 인공지능 최신 연구 동향’에 대해 최재식 교수가 발표하였고, 이어서 KAIST 설명가능 인공지능연구센터 소속 석·박사 과정 연구원들이 △주요 XAI 알고리즘 △XAI 알고리즘의 평가기법 △거대 언어모델(LLM), 이미지 생성모델, 시계열 데이터에 대한 설명성 △ XAI Framework, 의료 도메인 적용 사례를 주제로 발표했다. 튜토리얼 마지막날에는 독일 Fraunho
2024-11-29유전자, 단백질, 대사물질 등 복잡한 정보를 표현하는 바이오 경로 이미지는 중요한 연구 결과를 내포하고 있지만, 이미지 기반 정보 추출에 대해 그동안 충분한 연구가 이뤄지지 않았다. 이에 우리 연구진은 바이오 경로 정보를 자동으로 추출할 수 있는 인공지능 프레임워크를 개발했다. 우리 대학 생명화학공학과 김현욱 교수 연구팀이 바이오 경로 이미지에서 유전자와 대사물질 정보를 자동으로 추출하는 기계학습 기반의 ‘바이오 경로 정보 추출 프레임워크(이하 EBPI, Extraction of Biological Pathway Information)’를 개발했다고 28일 밝혔다. 연구팀이 개발한 EBPI는 문헌에서 추출한 이미지 속의 화살표와 텍스트를 인식하고, 이를 기반으로 바이오 경로를 편집 가능한 표의 형태로 재구성한다. 객체 감지 모델 등의 기계학습을 사용해 경로 이미지 내 화살표의 위치와 방향을 감지하고, 이미지 속 텍스트를 유전자, 단백질, 대사물질로 분
2024-11-28생물학 연구에 사용되는 형광 현미경이나 반도체 산업에 사용되는 주사전자현미경의 공통점은 불안정성으로 인해 흐려진 영상(블러, blur)을 보정하는 과정이 반드시 필요하다는 점이다. 우리 연구진이 굉장히 강한 잡음에 의해 손상된 왜곡 영상에 대해 적응형 필터와 생성형 인공지능 모델을 융합해 영상을 복원하는 데 성공했다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 삼성전자 DS부문 반도체연구소 차세대공정개발실과 공동 연구를 통해 왜곡 및 강한 잡음이 존재하는 의료·산업 영상을 복원하는 기술을 개발했다고 26일 밝혔다. 스마트폰 카메라 사진에 영상의 흐림·왜곡이 생겼을 때 보정하는 문제를 디컨볼루션(deconvolution) 또는 디블러링(deblurring)이라고 하며, 흐려진 영상 정보만 이용해 선명한 영상을 복원하는 기술을 블라인드 디컨볼루션(blind deconvolution)이라고 한다. 흥미롭게도 디컨볼루션 문제는 일상뿐만 아니라 생물학
2024-11-26그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12