< 신소재공학과 이건재 교수 >
우리 대학 신소재공학과 이건재 교수와 왕희승 박사팀이 *공진형 유연 압전 음성 센서를 개발해 정확도가 높은 초고감도의 인공지능 기반 화자(話者) 식별 및 음성 보안기술을 구현했으며, 이를 스마트폰과 인공지능 스피커에 탑재해 제품화하는 데도 성공했다고 15일 밝혔다.
☞ 공진형 압전 음성 센서: 공진이란 특정 주파수 영역에서 센서가 큰 진폭으로 진동하는 현상을 말하며, 압전이란 압력을 가했을 때, 전기적인 신호가 자발적으로 생성되는 현상을 말한다. 음성에 의해 센서의 막이 진동하게 될 때, 공진 현상이 일어나 민감도 높은 전압 신호를 얻을 수 있다.
인간이 먼 거리의 소리를 인식하는 방법은 달팽이관에 있는 사다리꼴 막이 가청주파수 대역에서 수많은 공진 현상을 발생시키며 소리를 증폭하는 원리에 있다. 연구진은 이러한 원리의 효과를 극대화하기 위해 매우 얇은 유연 압전 막을 사용해 인간의 귀를 모사했고, 여러 공진 채널을 구현해 소리를 초고감도로 식별할 수 있는 공진형 음성 센서를 제작했다.
이건재 교수팀은 2018년도에 세계 최초로 공진형 유연 압전 음성 센서 개념을 제시한 데 이어, 이번 연구에서는 센서 구조에 따른 공진, 주파수, 압전 막의 역할 등을 이론적으로 밝히고 크기를 매우 소형화함과 동시에 성능이 향상된 음성 센서를 개발했다.
유연 압전 음성 센서는 원거리에서 스마트 기기들을 정확하게 제어하는 미래 사물인터넷 기술과 음성을 암호화하는 보안기술을 연결함으로써 소비자 맞춤형 서비스 제공에 크게 이바지할 것으로 전망된다.
생체 모사된 공진형 음성 센서는 신호 대 잡음비(Signal to noise ratio, SNR)가 우수해 음성인식 기능이 뛰어나고 다수 채널을 보유하기 때문에, 인공지능 음성 서비스에 적은 데이터양으로도 화자 식별 정확도를 높이는 강점이 있다.
연구팀의 음성 센서는 같은 조건에서 정전용량형 상용 마이크로폰과 성능 비교를 진행한 결과, 음성 분석 및 화자 식별에 있어 인식률을 크게 높였고 조건에 따라 오류율을 60%에서 95%까지 줄일 수 있었다.
연구팀이 개발한 시제품은 이 교수가 교원 창업한 기업인 ㈜프로닉스 社를 통해 2020년 세계 가전박람회(CES)에서 공개된 바 있으며, 현재 해당 기술은 완성도 높은 인공지능 음성 기술을 시연하며 ㈜프로닉스 미국 지사를 통해 실리콘밸리의 유수 IT 기업들과 협업도 추진하고 있다.
< 그림 1. 달팽이관 내 기저막을 모사한 모바일 압전 음성 센서의 원리 >
< 그림 2. 인공지능을 통한 화자 식별 개략도 >
< 그림 3. 스마트폰 및 인공지능 스피커에 탑재된 유연 압전 음성 센서 >
이건재 교수는 "이번에 제품화된 모바일 음성 센서는 높은 민감도를 보유하면서도 크기를 획기적으로 줄였기 때문에 미래 인공지능기술을 구동하는 핵심 센서로 적용할 수 있다ˮ며 "현재 대량생산 상용화 공정도 완성 단계에 있어 실생활에 곧 적용될 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 휴먼플러스 인공지능 센서 센터의 지원을 받아 수행됐으며, 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 2월 12일 字 게재됐다.
신생항원이란 암세포의 돌연변이에서 나온 단백질 조각 중 면역반응을 유도할 수 있는 항원들로서 항암 백신 개발의 이상적인 대상으로 주목받고 있다. 모더나 및 바이오엔텍은 암 치료를 위한 신생항원 백신용으로 개발하던 mRNA 플랫폼을 사용해 COVID-19 백신을 성공적으로 개발한 바 있으며, 현재 대규모 제약회사들과 함께 신생항원 암 백신 임상시험을 진행하고 있다. 이런 암 백신 개발을 위해 핵심적인 단계인 환자 맞춤형 신생항원 발굴에 활용될 인공지능 플랫폼이 개발되어 화제다. 우리 대학 바이오및뇌공학과 최정균 교수가 ㈜펜타메딕스와의 공동연구를 통해 개인 맞춤 치료용 암 백신에 사용될 수 있는 신생항원을 예측하는 인공지능(AI) 모델을 개발하고 웹서비스를 구축했다고 17일 밝혔다. 최정균 교수 연구팀은 딥러닝을 이용해 실제로 T 세포 면역반응을 유도할 수 있는 신생항원을 발굴하는 AI 모델을 개발했으며, 연구자들이 손쉽게 활용할 수 있는 웹서비스를 구축해 DeepNeo라는
2023-05-17우리 대학 김재철AI대학원(원장 정송)과 기술가치창출원(원장 최성율)이 공동 주관하여 ‘KAIST AI기술설명회 2023’을 5월 12일(금) 서울 COEX에서 개최했다. 오전 세션에서는 최근 사회에 큰 파장을 일으키고 있는 생성 AI분야의 양대 주제인 영상생성 모델 (Diffusion Model)과 대형 언어생성 모델 (ChatGPT 등)에 대해 우리 대학 김재철AI대학원 예종철 교수, 서민준 교수가 각각 튜토리얼을 진행했다. 또한 인공지능 기술을 사용하여 산업설비의 에너지 비용을 절감한 사례에 대해 최재식 교수가 발표했다. 이어서 KAIST 기술이전 절차(지식재산 및 기술이전센터 김권 센터장)와 KAIST 장기 기업자문 특화 플랫폼인 ILP 프로그램(산학협력센터 김성완 센터장)에 대해서 일반에 소개하는 자리를 가졌다. 기술소개 세션 1부에서는 ▲자기 피드백을 활용한 고성능 챗봇 개발 기술(서민준 교수) ▲대형 언어모델 교사를 활용한 소형 추론 모델
2023-05-15우리 대학 전산학부 홍승훈 교수가 이끄는 연구팀이 지난 5월 1일부터 5월 5일에 열린 기계학습 분야의 최우수 국제학술대회인 ‘표현 학습 국제 학회 2023(International Conference on Learning Representation, 이하 ICLR 2023)’에서 최우수논문상 (Outstanding Paper Award)를 수상했다고 5일 밝혔다. ICLR 2023은 인공지능 분야의 가장 권위 있는 학회 중 하나로서, 구글 스칼라 h-5 인덱스 기준 기계학습 분야의 1위에 올라있으며, 모든 과학 분야의 출판물 중 9위를 기록하고 있다. 올해 최우수논문상은 전체 1,574편의 논문 중 상위 4편에 주어졌다. 홍 교수팀의 ICLR 최우수논문상 수상은 한국인으로서는 최초이며, 주요 기계학습 학회에서 국내 기관이 주축이 되어 진행한 연구로 최우수논문상을 수상한 최초의 사례이기도 하다. 전산학부 김동균 박사과정(제1 저자), 김진우 박사과
2023-05-08다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다. 김
2023-04-05우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 인공지능 기반 약물 상호작용 예측 기술을 고도화해, 코로나19 치료제로 사용되는 팍스로비드(PaxlovidTM) 성분과 기존 승인된 약물 간의 상호작용 분석 결과를 논문으로 발표했다고 16일 밝혔다. 이번 논문은 국제저명학술지인 「미국국립과학원회보 (PNAS)」誌’ 3월 13일자 온라인판에 게재됐다. ※ 논문명 : Computational prediction of interactions between Paxlovid and prescription drugs ※ 저자 정보 : 김예지(한국과학기술원, 공동 제1 저자), 류재용(덕성여자대학교, 공동 제1 저자), 김현욱(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 연구팀은 이번 연구에서 2018년에 개발한 인공지능 기반의 약물 상호작용 예측 모델인 딥디디아이(DeepDDI)를 고도화한 딥디디아이2(DeepDDI2)를 개발했다
2023-03-16