< (왼쪽부터) 생명화학공학과 정유성 교수, 장지돈 박사과정, 구근호 박사후연구원 >
우리 대학 생명화학공학과 정유성 교수 연구팀이 딥러닝을 활용해 소재의 합성 가능성을 높은 정확도로 예측하는 기술을 개발했다고 22일 밝혔다.
신소재 설계의 궁극적인 목표는 소재를 설계하고 그것을 실험적으로 합성하는 것이지만 현실적으로는 새롭게 설계된 대부분의 소재가 실제 합성 단계에서 성공하지 못하고 버려지는 경우가 많다. 이는 불필요한 시간과 자원의 낭비를 초래한다. 소재의 합성 여부는 반응 조건, 열역학, 반응 속도, 소재 구조 등 다양한 요인에 의해서 결정되기 때문에, 소재의 합성 가능성을 예측하는 것은 매우 도전적인 과제로 여겨져 왔다.
이런 문제 해결을 위한 방안으로 간단한 열역학적 안정성만을 고려해 고체 소재의 합성 가능성을 추정하지만 정확도는 매우 떨어지는 편이다. 일례로 에너지적으로 안정된 물질이라 하더라도 합성이 안 되는 경우가 아주 빈번하고, 또 반대로 *준안정 상태의 물질들도 합성되는 경우가 많기 때문이다. 따라서, 합성 가능성에 대한 예측 정확도를 획기적으로 높일 수 있는 방법론의 개발이 시급한 과제로 여겨져 왔다.
☞ 준안정(metastable) 상태 : 어떤 물질이 열역학적으로 안정된 ‘바닥 상태’가 아닌 상태
정유성 교수 연구팀이 개발한 소재 합성 가능성 예측기술은, 기존 합성이 보고된 고체 소재들의 구조적 유사성을 그래프 합성 곱 신경망(GCN, Graph Convolutional Neural Network)으로 학습해 새로운 소재의 합성 가능성을 예측할 수 있다. 특히, 현재까지 합성이 안 된 물질이라 하더라도 합성이 성공할 가능성은 여전히 존재하기 때문에 참값(레이블)을 이미 알고 학습을 진행하는 일반적인 지도학습과는 달리 양의 레이블(+)을 가진 데이터와 레이블이 없는 데이터(Positive-Unlabeled, P-U)를 이용한 분류 모델 기반의 준 지도학습을 사용했다.
정 교수팀은 5만여 종에 달하는 이미 합성이 보고된 물질과 8만여 종의 *가상 물질로 이뤄진 `머터리얼스 프로젝트(Materials Project, MP)'라는 소재 관련 데이터베이스를 이용해 모델을 구축했다. 연구팀 관계자는 이 신기술을 활용한 결과, 소재들의 합성 가능성을 약 87% 정확하게 예측할 수 있다고 설명했다. 정 교수팀은 또 이미 합성된 소재들의 열역학적 특성을 분석한 결과, 열역학적 안정성만으로는 실제 소재의 합성 가능성을 예측할 수 없다는 사실도 알아냈다.
☞ 가상 물질(hypothetical materials) : 기존에 합성되어 보고된 물질들을 원소 치환해서 얻어지는 가상의 물질들로 아직 실험적으로 합성 보고가 이루어지지 않은 물질
이와 함께 머터리얼스 프로젝트(MP) 데이터베이스 내에 합성 가능성 점수가 가장 높은 100개의 가상 물질에 대해 문헌조사를 실시한 결과, 이들 중 머터리얼스 프로젝트(MP) 데이터베이스에는 합성 여부가 아직 알려지지 않았지만 실제로 합성돼 논문에 보고된 소재만도 71개에 달하는 것을 확인했고 이를 통해 모델의 높은 정확도를 추가로 입증했다.
< 그림 1. 개발된 소재 합성 가능성 예측 모델 모식도 >
정유성 교수는 "빠른 신소재 발견을 위해 다양한 소재 설계 프레임워크가 존재하지만 정작 설계된 소재의 합성 가능성에 관한 판단은 전문가 직관의 영역으로 남아 있다ˮ면서 "이번에 개발한 합성 가능성 예측 모델은 새로운 소재를 설계할 때 실제로 합성 가능성을 실험 전에 미리 판단할 수 있어 새로운 소재의 개발시간을 단축하는 데 큰 도움이 될 것ˮ이라고 말했다.
생명화학공학과 장지돈 박사과정과 구근호 박사후연구원이 공동 제1 저자로 참여한 이번 연구결과는 미국화학회가 발행하는 국제학술지 미국화학회지(Journal of the American Chemical Society) 온라인 10월 26일 자에 실렸다. (논문명: Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learing)
< 그림 2. 개발된 소재 합성 가능성 예측 알고리즘 모식도 >
한편 이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구)과 미래소재 디스커버리 사업 지원을 받아 수행됐고, 연구에 KISTI의 슈퍼컴퓨터를 활용했다.
식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다. 우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다. 천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않
2024-08-142021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다.
2024-07-25국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다. 우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다. *합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다. 연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자
2024-07-02우리 대학 신소재공학과 김상욱 교수가 미국재료학회(Materials Research Society, 이하 MRS) 2025년 봄 학회 의장(Meeting Chair)직과 함께 유럽재료학회(European-Materials Research Society, 이하 E-MRS)의 2025년 가을 학회 의장으로 활동하게 되었음을 24일 밝혔다. 신소재 분야 세계 최대 규모의 이 두 학회는 인공지능, 반도체, 에너지, 지속성, 헬스케어 등 인류가 당면한 난제를 신소재 과학기술의 발전을 통해 해결하기 위한 다양한 아이디어들을 논의한다. MRS는 1973년 미국에서 설립되어 전 세계 13,000명 이상 신소재 연구 관계자들이 회원으로 참여하고 있으며, 학술기관이나 산업체의 글로벌 네트워크에 폭넓게 기여하고 있다. 한편, E-MRS는 1983년 미국 MRS 학회에 참석했던 유럽의 신소재 분야 과학자들에 의해 유럽과 더 나아가 인류 발전에 필요한 기초과학과 산업간 연결 및 커뮤니티를 강
2024-06-24국내 자생 약용식물인 ‘광대싸리’에서 추출된 세큐린진 G는 항암제, 퇴행성 신경질환 치료제 및 마약중독 치료제로 개발 가능한 중요한 세큐리네가 천연물군에 속해 있다. 우리 대학 화학과 학부생이 추진한 연구를 통해 세계 최초로 세큐린진 G의 천연물 전합성*에 성공해 화제다. *천연물 전합성(Total Synthesis): 쉽게 구할 수 있는 시작 물질로부터 여러 단계의 화학반응을 통해 자연에 존재하는 천연물을 실험실에서 합성하는 연구 분야로 각 단계의 화학반응이 모두 성공적으로 이루어져야 목표 분자를 최종적으로 합성할 수 있어 연구 호흡이 길고 난이도가 높다. 우리 대학은 화학과에 재학 중인 윤태식 학부생이 제1 저자로 참여하고(연구 지도교수: 한순규 교수) 대학원생 멘토인 김태완 대학원생이 공동 저자로 참여한 세큐린진(Securingine) G 전합성 논문이 국제 학술지에 게재됐다고 7일 밝혔다. 한순규 교수 연구팀의 윤태식 학사과정 학생이 주저자로
2024-06-07