우리학교 화학과 유룡 특훈교수와 기술경영전문대학원 안철수 석좌교수가 서울경제신문이 주관한 미래를 이끌 50인에 선정됐다.
대학교수 중에는 유일하게 우리학교에서 두 명의 교수가 선정됐다.
유교수는 석유화학공정에서 필수 촉매로 이용되고 있는 제올라이트 합성 분야의 세계적 학자다. 수 나노미터 크기의 구멍이 규칙적으로 뚫린 이산화규소 물질을 거푸집으로 만들어 그 안에서 분자나 원자를 조립시킨 다음 거푸집을 없애는 방식으로 나노 구조물을 합성하는 이른바 "나노 거푸집 합성법"을 세계 최초로 창안했다.
안교수는 지난 1988년 서울대 의대 박사과정중 컴퓨터 바이러스를 퇴치하기 위한 V3 백신을 개발했다. 1995년 안철수 컴퓨터바이러스연구소를 설립한 후 10년간 안철수 연구소 대표로 일하며 국내 보안업계의 성장을 주도했다. 안 교수는 대학생들이 가장 존경하는 기업인으로 손꼽히며 각종 방송프로그램에 출연할 때마다 "안철수 신드롬"을 일으키기도 했다.
그밖에 대학교수로는 김빛내리 서울대 생명과학부 교수, 장항석 연세대 의과대학 교수, 신관호 고려대 경제학과 교수가 선정됐다.
인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다. 우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다. 슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다. *밀도범함수론(DFT):
2024-10-30식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다. 우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다. 천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않
2024-08-142021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다.
2024-07-25국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다. 우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다. *합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다. 연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자
2024-07-02국내 자생 약용식물인 ‘광대싸리’에서 추출된 세큐린진 G는 항암제, 퇴행성 신경질환 치료제 및 마약중독 치료제로 개발 가능한 중요한 세큐리네가 천연물군에 속해 있다. 우리 대학 화학과 학부생이 추진한 연구를 통해 세계 최초로 세큐린진 G의 천연물 전합성*에 성공해 화제다. *천연물 전합성(Total Synthesis): 쉽게 구할 수 있는 시작 물질로부터 여러 단계의 화학반응을 통해 자연에 존재하는 천연물을 실험실에서 합성하는 연구 분야로 각 단계의 화학반응이 모두 성공적으로 이루어져야 목표 분자를 최종적으로 합성할 수 있어 연구 호흡이 길고 난이도가 높다. 우리 대학은 화학과에 재학 중인 윤태식 학부생이 제1 저자로 참여하고(연구 지도교수: 한순규 교수) 대학원생 멘토인 김태완 대학원생이 공동 저자로 참여한 세큐린진(Securingine) G 전합성 논문이 국제 학술지에 게재됐다고 7일 밝혔다. 한순규 교수 연구팀의 윤태식 학사과정 학생이 주저자로
2024-06-07