< (왼쪽부터) 생명화학공학과 고동연 교수, 황영은 박사과정 >
우리 대학 생명화학공학과 고동연 교수 연구팀이 에너지 집약 산업체의 이산화탄소 배출량을 줄이는 동시에 산업 부산물을 유용한 자원으로 전환하는 신개념 고체 탄산화 시스템을 개발했다고 23일 밝혔다.
연구팀이 개발한 이 시스템은 *중공사막 형태의 `초투과성 분리막'을 이용해 연속적으로 이산화탄소 포집과 전환이 가능하기 때문에 탄소 배출량을 대량으로 줄일 수 있다.
☞ 중공사막: 가운데가 비어있는 형태의 막. 인공 신장 투석기나 정수기 따위의 여과재로 사용된다.
생명화학공학과 황영은 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `ACS 서스테이너블 케미스트리 앤드 엔지니어링(ACS Sustainable Chemistry & Engineering)' 10월호에 실렸는데 연구의 파급력을 인정받아 표지논문으로 선정됐다. (논문명 : Solid Carbonation via Ultrapermeable PIM-1 Hollow Fiber Membranes for Scalable CO2 Utilization).
최근 탄소배출권 가격이 오르면서 산업계의 이산화탄소 배출 비용에 대한 절감도 절실히 요구되고 있다. 또한 에너지 집약 산업체의 부산물(석탄회 및 철강 슬래그 등)에 대한 처리비용도 날로 증가하고 있어 이산화탄소를 산업 부산물과 반응시켜 부가가치가 있는 물질로 전환하는 데 관심이 쏠리고 있다.
특히, 이산화탄소를 탄산칼슘 등의 고체 탄산염으로 전환해 건설 소재로 이용하는 기술은 전 세계 시장에서 2030년까지 연간 약 1조 달러의 수익을 창출할 것으로 예상되며, 배출되는 이산화탄소를 연간 약 30~60억 톤 감축할 수 있는 기술로 주목받고 있다.
고동연 교수팀이 개발한 고체 탄산화 기술은 이산화탄소와 알칼리 금속(칼슘, 마그네슘)의 자발적 결정화 반응을 이용하는 일종의 자연모방 기술이다. 이 기술은 이산화탄소를 열역학적으로 가장 안정된 탄소 저장체인 고체 탄산염(CaCO3, MgCO3)으로 전환하는 기술이다. 고체 탄산염은 고품위 물성 제어를 통해 건설·토목 소재, 제지산업, 고분자, 의약, 식품, 정밀화학 분야에 활용할 수 있다.
결과적으로 고 교수팀이 개발한 기술을 활용하면 이산화탄소 배출량을 대폭 줄여 탄소배출권의 절약은 물론 고부가가치 생산물을 통해 추가적인 경제성을 확보할 수 있다는 게 큰 장점이다.
고 교수팀은 우선 미세다공성 고분자로 이뤄진 초투과성 분리막 기술을 통해 기존 공정 유닛보다 5~20배가량 작은 부피로 기존 공정 대비 50% 이상 뛰어난 물질전달 효율을 갖는 고체 탄산화 시스템을 구현하는 데 성공했다.
미세다공성 고분자는 회전할 수 없는 단단한 부분과 고분자 사슬이 뒤틀리는 지점이 반복적으로 나타나는 독특한 구조를 가지는데 기체 분자를 빠른 속도로 투과시킬 수 있어 가스 분리 분야에서 유망한 소재로 주목받고 있다.
연구팀은 이와 함께 미세다공성 고분자를 속이 빈 실과 같은 중공사막 형태로 가공해 모듈화할 수 있는 기술을 확보했다. 이렇게 제조된 초투과성 중공사막 모듈에 이산화탄소/질소 혼합 기체를 흘려보내면 이산화탄소만 선택적으로 빠르게 분리막을 가로질러 중공사막 외부의 알칼리 이온과 반응해 순간적으로 탄산염을 생성하는 원리를 연속식 모듈로 구현했다.
고 교수팀이 개발한 기술은 부피 대비 표면적이 기존 시스템보다 수 배 이상 높아 매우 높은 공간 효율성을 갖는 분리막 모듈의 특성을 이용해 장시간의 연속 공정이 가능한 게 특징이자 장점이다. 이 때문에 이산화탄소 전환 공정의 에너지 및 비용 대비 효율성을 높일 수 있어 고체 탄산염을 활용하는데 높은 경제성뿐만 아니라 이산화탄소 포집 및 전환(CCU) 기술 활성화에도 기여할 것으로 기대가 크다.
< 그림 1. 미세다공성 고분자 중공사막 모듈을 이용한 광물탄산화 공정 모식도 >
< 그림 2. 고분자 중공사막의 구조 >
이번 연구를 주도한 고동연 교수는 "신기술을 적용해 이번에 새로 개발한 고체 탄산화 시스템은 온실가스 배출량이 많은 발전소나 제철소, 시멘트 제조업체 등 관련 산업계의 탄소배출권 구매량을 줄일 수 있고 동시에 자원 재순환을 통해 경쟁력을 증대시킬 수 있을 것으로 기대된다ˮ고 설명했다.
한편 이번 연구는 산업통상자원부 에너지국제공동연구사업의 지원을 받아 수행됐다.
우리 대학 생명화학공학과 고동연 교수 연구팀이 전자빔을 탄소 분리막에 쏘아 0.05nm(나노미터) 이하의 크기 차이를 갖는 기체 혼합물을 효율적으로 분리할 수 있는 기체 분리막을 개발했다고 27일 밝혔다. 탄소 분자체 분리막(carbon molecular sieve membrane)은 기존 고분자 분리막 대비 높은 선택도(selectivity)와 투과도(permeability)를 동시에 충족시켜 유망한 재료로 거론되고 있으나, 매우 작은 크기 차이를 지닌 분자쌍을 효율적으로 분리하는데 어려움을 겪고 있다. 이번 연구는 이와 같은 문제점을 해결하기 위해 탄소 분리막의 (초)미세다공성을 조절하는 새로운 방법으로 전자 조사(electron irradiation)를 제안하며, 연구팀이 개발한 기술은 조사량에 따라 목표 분자를 설정할 수 있는 기술이다. 생명화학공학과 오반석 박사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스 (Nature Commu
2022-09-28우리 대학 생명화학공학과 고동연 교수 연구팀이 새로운 미래지향적인 패러다임의 분리막 기반 원유정제 기술에 대한 Perspective 기사를 Science지에 게재했다. 글로벌 탄소중립을 달성을 위한 탈탄소화(Decarbonization)가 산업계의 화두인 현재 기존 석유화학 공정의 에너지 효율성을 높이고 탄소를 덜 배출할 수 있는 새로운 기술에 대한 요구가 크다. 즉, 원유를 끓는점 차이에 따라 정제하는 분별 증류 공정에 전 세계적으로 막대한 양의 에너지가 소비되기 때문에 이를 대체할 수 있는 기술이 필요한 실정이다. 최근 고동연 교수 연구팀을 포함해 전 세계의 연구팀들이 이와 같은 에너지-탄소 저감 문제를 해결할 수 있는 기술로 원유를 구성하는 분자를 크기와 모양에 따라 상온에서 연속적으로 분리막을 통해 분리할 수 있는 기술에 대해 연구하고 있다. 분리막 기술은 기존의 증류법보다 약 10배 정도 낮은 에너지를 소비하며 석유화학공정의 탄소배출량을 극적으로 줄일 수 있는 기술이
2022-06-03우리 대학 생명화학공학과 고동연 교수 연구팀이 상온에서 크기 차이 0.1 나노미터(nm) 이하의 액상 유기물질을 직접 분리할 수 있는 유기용매 정삼투 시스템을 개발했다고 12일 밝혔다. 액체 혼합물의 대규모 분리 공정은 주로 물질의 끓는점 차이를 이용하는 증류법을 이용하는데, 이때 전 세계적으로 막대한 양의 에너지가 소비된다. 특히, 석유화학 산업의 기초가 되는 액상 탄화수소들은 섬유, 플라스틱 등 일상생활과 밀접한 소재 개발에 필수적이기 때문에 이들을 저에너지, 저탄소 공정을 통해 분리하는 새로운 미래지향적인 패러다임이 필요하다. 연구진이 개발한 초미세 다공성 탄소 분리막은 위와 같은 에너지 문제를 해결할 수 있는 기술로, 액상 탄화수소를 크기와 모양에 따라 상온에서 연속적으로 분리할 수 있는 기술이다. 생명화학공학과 서혁준 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 에 온라인 게재됐으며,
2021-08-13〈 김수현 박사과정, 김희탁 교수, 최정훈 박사과정 〉 우리 대학 생명화학공학과 정희태, 김희탁 교수 공동 연구팀(차세대배터리센터)이 용량 유지율 15배, 수명을 5배 향상시킨 바나듐레독스-흐름전지를 개발했다. 신재생 에너지의 발전과 함께 이를 통해 생산된 에너지를 효율적이고 안전하게 저장할 수 있는 대용량 에너지 저장장치의 필요성이 커지고 있다. 바나듐레독스-흐름전지는 폭발 위험이 없는 이차전지로 대용량화에 적합해 기존 에너지 저장장치를 대체할 수 있을 것으로 기대된다. 김수현, 최정훈 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano letters)’ 5월 3일자 온라인 판에 게재됐다. (논문명 : Pore Size-Tuned Graphene Oxide Framework as lon-Selective and Protective Layers on Hydrocarbon Membranes for Vanadiu
2018-06-07- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 - 우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다. 최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다. * CCS : Carbon Capture and sequestration 현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다. 발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다. 기존에 연구되었던 건식흡수제인 MOF(Metal Orga
2013-02-01