< (왼쪽부터) 장영균 소령, 박규순 대위 >
우리 대학 문술미래전략대학원 박사과정 육군소령 장영균(지도교수 : 양재석)과 신소재공학과 석사과정 육군대위 박규순(지도교수 : 스티브박)이 국방대학교 대학원생 국방학술대회에서 금상을 수상하는 쾌거를 달성했다.
매년 국방대학교에서 열리는 국방학술대회는 안보정책, 군사전략, 국방관리, 국방과학 4개 분과에서 국방분야 우수 연구를 수상하는 대회다. 대회에서는 국방대학교, KAIST, 서울대 등 전국 각지에서 국방관련 연구를 하는 군 위탁장교와 민간학생들이 참가했다. 그 중에서 우리학교 학생은 안보정책 분과와 국방과학 분과에 참가하여 각 분과에서 1등을 해 금상(각 군 참모총장상)을 수상했다. 이를 통해 KAIST 학생들이 국가, 국방 R&D 분야에서 뛰어난 역량을 갖췄다는 사실을 알 수 있다.
현재 국군간호사관학교 교양학처 군사학교수로 재직중인 문술미래전략대학원 장영균 소령은 “Network Analysis of the US-China Hegemonic Transition”(미국과 중국의 패권전이에 대한 네트워크 분석) 이라는 연구논문을 발표했다. 이 연구는 현재 국제관계의 핵심 이슈인 미국과 중국의 패권경쟁을 네트워크 분석을 적용해 분석 및 평가한 연구로서, 심사위원들로부터 데이터에 기반한 과학적 접근을 통해 미국과 중국의 패권전이 현상을 객관적으로 분석했다는 평을 받았다. 장영균 소령은 "질적연구가 주를 이루고 있는 국제관계 분야에서 복잡계 네트워크라는 과학적 기법을 적용해 국제사회의 구조변화를 객관적으로 분석하고, 이를 기초로 국가의 미래 안보전략 수립에 기여하고 싶다"고 말했다. 장영균 소령의 수상을 통해 우리 대학이 이·공계 분야뿐만 아니라 사회과학 분야, 특히 국방 사회과학 분야에도 높은 수준을 갖추고 있음을 알 수 있다.
신소재공학과 박규순 대위는 “Development of 3D printable inks to fabricate fabric-based tactile sensors for warrior platform and robot combat system(미래 보병체계 및 로봇 전투체계 적용을 위한 직물 기반 촉각센서 제작용 3D 프린팅 용액 개발)”의 연구주제로 발표했다. 이는 현재 군이 추진하고 있는 워리어 플랫폼(Warrior Platform, 미래 보병체계)과 소프트 로봇 전투체계에 적용하기 위한 촉각센서를 개발한 것이다. 워리어 플랫폼에 촉각센서를 적용해 전투원의 모든 신체활동을 인지, 국방 데이터센터와 연계해 실제 전투나 훈련 속에서 전투원이 필요로 하는 움직임을 데이터화 할 수 있다. 이를 통해 교육훈련의 변혁을 이끌어 낼 수 있는 점에서 좋은 평가를 받았다. 또한, 전장상황 속에서는 로봇체계의 파괴나 변형이 빈번하게 이루어진다. 이러한 상황 속에서 구성품의 각도와 길이를 기반으로 역계산하는 기존의 로봇 제어시스템은 필연적으로 오차가 발생하는데, 촉각센서를 통해 파괴와 변형이 이루어진 이후의 결과를 통해 정확한 자세제어가 가능하다.
발표 당시 심사위원은 촉각센서가 우리 군에 꼭 필요한 분야라며 좋은 연구를 해주어 고맙다는 의견을 말하기도 했다.
특히, 박규순 대위는 우리 대학 석사과정 1학년 재학 중으로 위 성과는 여러 박사과정, 석사졸업예정자 학생들과 경쟁해 얻은 성과다. 또, 촉각센서가 군에 필요한 분야임을 알리기 위해 한국군사과학기술학회 발표와 육군 군수지에 기고를 하기도 했다. 군사과학기술을 대중들에게 쉽게 인지될 수 있도록 “Military Talk_재미있는 군사이야기”의 제목으로 일반도서를 출판하는 등 국방 R&D에 열정을 다하고 있다.
장영균 소령과 박규순 대위는 "함께 열정적으로 연구한 연구팀들과 연구에 전념할 수 있는 환경을 만들어준 학교와 지도교수님께 감사드린다"라며 “4차 산업혁명 시대를 맞아 대한민국의 안보를 위해 앞으로 더욱 성실히 연구에 임할 것이다.”라고 수상 소감을 밝혔다.
우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single T
2023-09-21전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로
2023-07-25우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 기존의 반도체공정을 이용하여 고해상도로 패터닝할 수 있는 초기전도성이 확보된 액체금속 기반의 신축성 전도체 필름 제작 방법을 개발했다고 밝혔다. 신축성 전도체는 최근 각광받고 있는 사용자 친화형 웨어러블 소자, 신축성 디스플레이, 소프트 로봇의 전자 피부 개발에 핵심 요소로 여겨져 활발하게 연구가 진행되어왔다. 최근 신축성 전도체 중 하나로 높은 전기전도성과 신축성, 낮은 기계적 강성을 동시에 만족하고 안정성도 어느정도 확보가 된 갈륨기반의 액체금속 입자가 전도성 필러로 각광받고 있다. 하지만 액체금속 입자의 경우에는 기계적 불안정성으로 인하여 제한된 형태의 용액공정으로만 사용이 가능했기 때문에, 기존의 금속을 전자소자에 통합하는 방법인 반도체 공정을 이용하는 것이 어려웠다. 이런 이유로, 액체금속 입자 기반의 전자소자는 지금까지 연구실 수준에서 노즐 프린팅, 스크린 프린팅과 같은 제한된 방법으로
2023-07-17우리나라의 법률은 지난 30년간 법령 개수, 조문, 글자 수 등이 급격하게 늘어나면서 미국 연방 법전보다도 더욱 복잡해지며 법률 접근성이 떨어지고 있어 법령정보 제공의 지능화가 필요한 시점이다. 이에 현 법체계의 복잡성과 강건성(robustness)을 규명하고, 시대별 분석을 통해 우리 법이 어떻게 발전해왔는지 알아냄으로써 미래 입법 방향을 예측하는 연구가 필요하다. 우리 대학 문화기술대학원 박주용 교수(복합계 물리학), 문술미래전략대학원 박태정 교수(법 발전학) 공동연구팀은 국내 법령 데이터와 국제 조약 데이터를 전수 수집한 뒤 복합계 네트워크로 구성하여 분석하는 ‘포스트 AI 시대 법 발전학’ 연구를 수행해 우리 법체계의 안정성을 제고하고 대중의 법률에 대한 이해를 높일 수 있는 섬세한 시각화가 가능한 그래프 데이터베이스를 구축할 계획임을 16일 밝혔다. 법 발전학은 국가 발전을 위한 적절한 법과 제도를 설계하는 학문으로서, 법∙과학기술∙문화가 국
2023-06-16우리 대학 물리학과 김갑진 교수와 신소재공학과 박병국 교수 공동연구팀이 뇌 모방 소자로 개발 중인 스핀토크발진기 주파수 대역을 증대시킬 핵심 기술을 개발했다고 18일 밝혔다. 두 연구팀은 비자성체/강자성체/산화물 3중층 구조의 자기발진소자에 게이트 전압을 인가하여 GHz 수준의 발진주파수 조절에 성공하였다. 이는 기존 기술보다 약 10배 이상 향상된 결과로 스핀토크 기반 뉴로모픽 소자가 가진 학습 효과의 휘발성, 좁은 주파수 대역 등의 문제를 해결할 핵심 기술로 제안되었다. 본 소자는 게이트 전압이 영구적으로 수직자기이방성을 변화시켜 소자에 전류가 흐르지 않아도 학습 내용이 저장되어 있는 비휘발성 특성을 가지고 있으며 그 폭이 GHz 수준으로 넓어 뉴로모픽 소자 활용성을 증대시켜줄 것으로 기대된다. 신소재공학과 최종국 박사과정과 물리학과 박재현 박사가 공동 제1저자로 참여하고, KAIST 신소재공학과 강민구 연구원, 고려대학교 이재성 교수와 김도윤 연구원, KAIST
2022-07-29