< 기계공학과 김정원 교수 >
우리 대학 기계공학과 김정원 교수가 이달의 과학기술인상 10월 수상자에 선정됐다.
과학기술정보통신부와 한국연구재단은 김정원 교수가 초고속, 고분해능, 다기능성 센서기술을 개발하여 기초정밀 공학의 지평을 넓힌 공로를 높이 평가했다고 선정 배경을 설명했다.
'이달의 과학기술인상'은 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구개발자를 매월 1명씩 선정해 과기정통부 장관상과 상금 1천만 원을 수여하는 상이다. 세종대왕이 길이와 부피의 측정체계를 확립한 10월 26일을 기념하는 ‘계량측정의 날’을 맞아 김정원 교수가 이달의 수상자로 선정됐다.
레이저를 이용한 초정밀 거리 측정기술은 비접촉, 비파괴 등의 장점을 앞세워 중력파 검출부터 산업용 센서까지 다양한 분야에서 활약해 왔다. 하지만 대표적인 레이저 측정기술 중 하나인 펄스비행시간(time-of-flight, TOF) 기술은 긴 거리 측정은 가능하지만 분해능이 떨어지며, 레이저 간섭계 기술은 분해능은 우수하지만 측정 범위가 마이크로미터에 불과하다. 또한 두 기술 모두 측정 속도가 느리며, 거리·분해능·시간 중 한 가지 성능을 향상하면 나머지 성능이 저하되는 한계가 있었다.
김 교수는 레이저에서 발생한 빛 펄스와 광다이오드로 생성한 전류 펄스사이의 시간 차가 100 아토초(10-16초, 1경분의 1초) 이하로 작다는 사실을 발견하고, 전광샘플링하는 방법으로 한 번에 여러 지점을 동시 측정할 수 있는 독창적인 초고속·초정밀·다기능 TOF센서를 개발했다. 측정속도 100메가헤르츠(1초에1억번 진동), 분해능 180피코미터(55억분의 1미터), 동적범위 150데시벨의 성능으로 기존 TOF와 간섭계 기술의 한계를 동시에 극복했다는 평이다. 연구결과는 네이처 포토닉스(Nature Photonics) 2020년 2월 10일자에 게재됐다.
김정원 교수는 "함께 열정적으로 연구한 대학원생들과 연구에 전념할 수 있는 환경을 만들어준 학교에 감사드린다"라며 "향후 마이크로 소자 내에서의 역학현상 탐구나 첨단제조를 위한 초정밀 형상측정 등 새롭고 다양한 기계·제조 분야에서 활용이 기대된다"라고 수상 소감을 밝혔다.
우리 대학 기계공학과 김영진 교수 연구팀과 한국에너지기술연구원(이하 에너지연, 원장 김종남) 에너지저장연구실 윤하나 박사 연구팀이 공동연구를 통해, 극초단 펨토초 레이저 직접 묘화 기술을 기반으로, 세계최초 낙엽 상 그래핀-무기-하이브리드 마이크로 슈퍼커패시터 제작에 성공했다고 13일 밝혔다. 웨어러블 전자 장치의 발전은 유연한 에너지 저장장치의 혁신에 직접적으로 영향을 받는다. 다양한 에너지 저장장치 중 마이크로 슈퍼커패시터의 경우 높은 전력 밀도, 긴 수명 및 짧은 충전 시간으로 큰 관심을 끌고 있다. 그러나, 증대되는 전자 전기 제품의 소비 및 사용, IT 모바일 기기의 첨단화에 따른 짧은 교체 주기에 따라 폐전지의 발생량이 증대하고 있다. 이는 폐전지의 수거, 재활용 및 처리 과정에 있어, 안정성 및 환경적인 이슈 등의 많은 어려움을 유발한다. 산림은 전 세계 육지의 30% 가량을 덮고 있으며, 산림에서는 엄청난 양의 낙엽이 배출된다. 이러한 바이오매스는 자연적으로
2022-01-13우리 대학 물리학과 조용훈 교수 연구팀이 머리카락 굵기보다 100배 얇은 정육각형 모양의 반도체 막대 구조 안에서 상호작용이 높은 양자 입자를 생성해, 손실이 커질수록 발광 성능이 좋아지는 신개념의 시공간 대칭성 레이저를 개발하는 데 성공했다고 11일 밝혔다. 이번 연구를 통해 개발된 시공간 대칭성 레이저는 향후 고효율의 레이저 소자부터 양자 광소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다. 어떠한 물리 시스템에서든 손실(loss)은 가능한 제거 하거나 극복해야 하는 대상으로 존재해왔다. 따라서, 이득(gain)이 필요한 레이저 시스템에서 손실이 있는 경우에는 작동에 필요한 최소 에너지(문턱 에너지)가 그만큼 증가하게 되므로 손실은 가능한 줄여야 하는 대상이었다. 하지만 양자역학에서 존재하는 시공간 대칭성(parity-time reversal symmetry) 및 붕괴 개념을 수학적인 유사성을 통해 광학 시스템에 적용하게 되면, 오히려 손실을 작동에 유익한
2021-06-11과학기술정보통신부와 한국연구재단은 이달의 과학기술인상 5월 수상자로 우리 대학 신소재공학과 신병하 교수를 선정했다고 4일 발표했다. 이달의 과학기술인상은 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구개발자를 매월 1명씩 선정해 과기부 장관상과 상금 1000만원을 수여하는 상이다. 과기부와 연구재단은 신병하 교수가 실리콘과의 이종 접합에 최적화된 고효율·고안정성의 큰 밴드갭(Band gap) 페로브스카이트 태양전지를 개발하고, 이를 바탕으로 초고효율 태양전지 구현 방향을 제시하여 차세대 태양전지 개발에 기여한 공로를 높게 평가했다고 밝혔다. 2050 탄소중립 실현을 위해서는 태양광 등 재생에너지의 효율 향상이 관건이다. 하지만 기존 태양전지는 빛을 전기로 바꾸는 광전효율이 낮아 최근에는 2개 이상의 태양전지를 연결하는 차세대 태양전지 개발이 활발하다. 하지만 이러한 차세대 태양전지의 소재로 주목받는 페로브스카이트는 빛, 수분 등 외부 환경에 민감해 고안정성
2021-05-06우리 대학 기계공학과 김정원 교수 연구팀이 한국원자력연구원 초고속 방사선 연구실과의 공동 연구를 통해 극초단 전자 펄스의 타이밍을 10펨토초(100조분의 1초) 안정도로 측정하고 제어하는 기술을 개발, 이를 적용해 초고속 전자카메라(전자회절장치)의 성능을 한층 더 높이는 데 성공했다고 5일 밝혔다. 이 새로운 타이밍 안정화 기술을 이용하면 초고속 전자 회절(ultrafast electron diffraction, UED) 기법의 분석 능력을 크게 개선해 그래핀 등의 2차원 물질과 같은 첨단 물질들의 새로운 성질들을 규명할 수 있는 핵심 기술이 될 것으로 기대된다. 신준호 박사(現 원자력(연))가 제1 저자로서 우리 대학 박사과정 중 수행한 연구 결과를 발표한 이번 성과는 국제학술지 `레이저 앤드 포토닉스 리뷰즈(Laser & Photonics Reviews; IF=10.655)'의 2021년 2월호 표지논문(front cover)으로 2월 11일 字 게재됐다. (논문명
2021-03-09우리 대학 물리학과 박용근 교수, 이상민 교수, 신소재공학과 김도경 교수 공동연구팀이 기존에는 활용할 수 없었던 소자와 재료로 레이저를 구현할 수 있는 새로운 비공진 방식의 레이저 제작기술을 개발했다고 12일 밝혔다. 일반적인 레이저는 거울 등을 이용해 빛을 가두는 구조(공진기) 내부에 빛을 증폭시키는 레이저 소재(이득 물질)을 배치하는 방식이다. 하지만 공진기 내부에서 빛의 경로가 일정하게 유지돼야 레이저가 작동하기 때문에, 매우 투명한 크리스탈 구조의 이득 물질에서만 레이저가 구현될 수 있었다. 따라서 자연계에 존재하는 많은 재료 중에 투명한 크리스탈로 제작할 수 있는 특수한 레이저 소재들만 활용됐다. 연구팀은 불투명한 이득 물질에서도 빛을 가둘 수 있는 공진기 구조를 내부에 만드는 새로운 방식의 레이저를 개발했다. 마치 `통발' 형태의 공간에서 빛이 갇힌 채로 주변 이득 물질에 의해 계속 산란되면서 증폭되는 원리다. 이 새로운 레이저는 이득 물질이 꼭 투명할 필요가
2021-01-12