< (왼쪽부터) KAIST 인공지능 양자컴퓨팅 IT인력양성 연구센터 배준우 교수, 이준구 센터장 >
우리 대학 인공지능 양자컴퓨팅 IT 인력양성 연구센터는 비즈니스와 과학 분야에 사용되는 양자 컴퓨팅을 발전시키기 위해 IBM과 협업하는 포춘 500대 기업, 교육기관, 스타트업, 연구소들의 공동체인 IBM Q 네트워크에 합류했다고 29일 발표했다.
우리 대학은 국내 최초의 IBM Q 네트워크 학술 멤버(Academic Member)로서 IBM의 진보된 양자 컴퓨팅 시스템을 활용해 양자 정보 과학의 발전과 초기 애플리케이션 탐구를 위한 연구 프로젝트를 수행할 예정이다. 또한, 과학과 비즈니스 전반에 걸쳐 큰 변화를 가져올 양자 컴퓨팅 시대에 대비해 양자 전문 인력 양성을 위한 인재 교육 및 훈련에 IBM 양자 재원을 활용하게 될 것이다. 이를 통해 4차 산업 혁명을 실현하기 위해 반드시 필요한 실행 기술이 될 것으로 기대되는 양자 컴퓨팅의 생태계 육성에 앞장서게 될 것이다.
이 멤버십 체결을 주도한 인공지능 양자컴퓨팅 IT 인력양성 연구센터장 이준구 교수(전기및전자공학부)는 양자 컴퓨팅을 “수학적 난제에 해당하는 계산 문제를 아주 빠르고 적은 전력으로 계산할 수 있는 새로운 기술, 미래를 바꿀 기술”이라고 설명하며 “한국은 양자 컴퓨팅에 대한 투자를 비교적 늦게 시작해 현재는 기술 격차가 크지만, KAIST의 IBM Q 네트워크 합류는 국가적 경쟁력 확보에 중요한 밑거름이 될 것”이라는 큰 기대감을 표했다.
우리 대학 인공지능 양자컴퓨팅 IT 인력양성 연구센터는 IBM 클라우드를 통해 대중에게 제공되는 IBM 퀀텀 익스피리언스(Quantum Experience)를 양자 인공지능, 양자 화학계산 등의 양자 알고리즘 연구 개발과 양자 컴퓨팅 교육에 이미 사용하고 있었다. 우리 대학은 IBM Q 네트워크에 합류함으로써 양자 인공지능 기반 질병 진단, 양자 전산화학, 양자 기계학습 기술 등 실용화 연구와 실험을 하는데 IBM의 최상급 양자 컴퓨터를 사용할 수 있게 될 것이다. 또한, IBM Q 네트워크 소속 해외 대학 및 기업과의 교류를 통해 양자 컴퓨팅 분야에 있어 국내 기술의 세계적 입지를 견고히 할 수 있을 것으로 예상된다.
※ IBM 퀀텀(Quantum)에 대해
IBM 퀀텀은 비즈니스 및 과학 애플리케이션을 위한 양자 시스템을 구축하고자 하는 업계 최초의 이니셔티브이다. IBM이 양자 컴퓨팅에 쏟고 있는 노력에 대한 자세한 내용은 www.ibm.com/ibmq 에서 제공된다.
IBM Q 네트워크에 대한 자세한 정보와 모든 파트너, 회원 및 허브의 전체 목록은 https://www.research.ibm.com/ibm-q/network/ 에서 제공된다.
양자컴퓨터의 기본 구성요소인 원자를 이동하여 배치하는 기술은 리드버그 양자컴퓨팅 연구에 매우 중요하다. 하지만 원자를 원하는 위치에 배치하려면, 일반적으로 광 집게라고 불리는 매우 집속된 레이저 빔을 사용해, 원자를 하나씩 잡아서 운반해야 하는데 이렇게 운반하는 동안 원자의 양자 정보가 변화할 가능성이 크다. 우리 대학 물리학과 안재욱 교수 연구팀이 레이저 빔을 이용하여 루비듐 원자를 하나씩 던지고 받는 기술을 개발했다고 27일 밝혔다. 연구팀은 광 집게가 원자와 접촉하는 시간을 최소화하여 양자 정보가 변하지 않도록 원자를 던지고 받는 방법을 개발했다. 연구팀은 원자의 온도가 매우 낮아 절대 영도 이하 4천만분의 일의 온도의 차가운 루비듐 원자가 광 집게의 초점을 따라서 빛이 가하는 전자기력에 매우 민감하게 움직인다는 특성을 이용했다. 연구팀은 광 집게의 레이저를 가속해서 원자에 광학적 킥을 줘서 원자를 목표지점으로 보낸 다음, 다른 광 집게로 날아오는 원자를 잡아서
2023-03-27우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용해 기존 양자 컴퓨팅 시스템의 대규모 큐비트 구현의 한계를 극복하는 3차원 집적된 화합물 반도체 해독 소자 집적 기술을 개발했다고 24일 밝혔다. ‘모놀리식 3차원 집적 초고속 소자’ 연구 (2021년 VLSI 발표, 2021년 IEDM 발표, 2022년 ACS Nano 게재)를 활발하게 진행해 온 연구팀은 양자컴퓨터 판독/해독 소자를 3차원으로 집적할 수 있음을 처음으로 보였다. ☞ 모놀리식 3차원 집적: 반도체 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 반도체 집적 기술로 불린다. 우리 대학 전기및전자공학부 김상현 교수 연구팀의 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 한국기초과학지원연구원 박승영 박사 연구팀과의 협업으로 진행한
2022-06-24우리 대학 전기및전자공학부 이준구 교수 연구실 류주영, 이증락, Eyuel Elala 석사과정 학생으로 이뤄진 AI양자컴퓨팅 ITRC 양자소프트웨어 연구팀이 QHack 2022 오픈 해커톤 사이언스 챌린지(Open Hackathon Science Challenge)에서 1등상(First Place)을 수상했다. QHack 2022 Open Hackathon은 미국 Xanadu 사에서 주최하여, 총 100여 개 국가에서 250여 명이 참가한 세계 최대 규모의 양자소프트웨어 해커톤 행사다. IBM Quantum, AWS, CERN QTI, Google Quantum AI 등의 대회 스폰서가 챌린지를 제시하고, 주제에 맞는 프로젝트를 심사하여 우승팀을 선정하였다. 본 프로젝트는 총 13개 챌린지 중에 CERN QTI에서 제시한 사이언스 챌린지에서 1등상(First Place)을 받았다. 학생들은 'Learning Based Error Mitigation for VQE'라는 주제
2022-04-07우리 대학 물리학과 최재윤 교수 연구팀이 ‘극저온 중성원자로 구성된 보즈-아인슈타인 응집체를 이용해 스핀 상관된 물질파 방출’에 성공했다. 물리학과 김경태 박사가 제 1저자로 참여한 이번 연구는 물리학 분야 권위지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’에 지난 7월 22일에 게재됐다. 극저온 중성 원자로 구현된 보즈 아인슈타인 응집체 (Bose-Einstein condensate, BEC)는 수만 개 이상의 원자들이 하나의 파동함수로 기술되는 양자 상태로, 중성 원자가 갖는 스핀 자유도를 활용하면 진공 압축 (squeezed vacuum state)상태를 구현 할 수 있으며, 이를 활용하여 다양한 양자 정보 연구를 수행할 수 있다. 양자 얽힘 상태 생성의 미시적인 과정은 두개의 스핀0인 원자가 충돌 이후 스핀1과 스핀-1로 변환되는 것으로, 생성된 스핀 쌍은 (+1,-1)와 (-1,+1)의 중첩 상태인
2021-09-01우리 대학 바이오및뇌공학과 이상완 교수(신경과학-인공지능 융합연구센터 소장)가 뇌 기반 인공지능 연구성과를 인정받아 2021년 IBM 학술상(舊 IBM 교수상) 수상자로 최종 선정됐다. IBM 학술상은 미국 IBM과 전 세계 유수 대학과의 연구 협력 활성화를 위해 제정된 상으로 IBM 연구소장 등 조직 내 핵심 연구자들의 내부 지명을 받아 후보자 군이 선정되고, 이후 연구 제안서의 임팩트, 연구의 창의성 및 연구업적 등을 종합적으로 평가해 최종 수상자가 결정된다. 수상자에게는 연구 범위나 특허 관련 제약 조건이 전혀 없는 연구비 형태의 상금이 지급되며, IBM 연구소와 다양한 형태의 연구 교류를 수행할 수 있게 된다. 국내에서는 과거 서울대 윤성로 교수(2018년), 고려대 이재성 교수(2005년), 서울대 문수묵 교수(2000년) 등이 수상자로 선정된 바 있다. 이상완 교수 연구팀은 2019년에 사이언스 로보틱스(Science Robotics)와 네이처 커뮤니케이션즈(
2021-06-17