< 그림 1. 챌린지 우승 상장 >
우리 대학 AI대학원 김기응 교수 연구팀(홍성훈, 윤든솔 석사과정, 이병준 박사과정)이 인공지능 기반 전력망 운영관리 기술을 겨루는 국제경진대회인 'L2RPN 챌린지(Learning to Run a Power Network Challenge 2020 WCCI)'에서 최종 1위를 차지했다. 이 대회는 기계학습 연구를 촉진하기 위한 각종 경진대회를 주관하는 비영리단체 ChaLearn, 유럽 최대 전력망을 운영관리하는 프랑스 전력공사의 자회사 RTE(Réseau de Transport d'Électricité)社 및 세계 최대 규모의 전력 회사 SGCC(State Grid of China)의 자회사인 GEIRI North America(Global Energy Interconnection Research Institute)에서 공동주최해, 세계 각국의 약 50팀이 약 40일간 (2020.05.20.~06.30) 온라인으로 참여해 성황리에 마감됐다.
단순한 전력망이 스마트 그리드를 넘어서 에너지 클라우드 및 네트워크로 진화하려면 신재생 에너지의 비율이 30% 이상이 돼야 하고, 신재생 에너지 비율이 높아지면 전력망 운영의 복잡도가 매우 증가한다. 실제로 독일의 경우 신재생 에너지 비율이 30%가 넘어가면서 전력사고가 3,000건 이상 증가할 정도로 심각하며, 미국의 ENRON 사태 직전에도 에너지 발전과 수요 사이의 수급 조절에 문제가 생기면서 잦은 정전 사태가 났던 사례도 있다.
전력망 운영에 인공지능 기술 도입은 아직 초기 단계이며, 현재 사용되고 있는 전력망은 관리자의 개입 없이 1시간 이상 운영되기 힘든 실정이다. 이에 프랑스의 RTE(Réseau de Transport d'Électricité) 社는 전력망 운영에 인공지능 기술을 접목하는 경진대회 'L2RPN'을 2019년 처음 개최했다. 2019년 대회는 IEEE-14라는 14개의 변전소를 포함하는 가상의 전력망에서 단순한 운영을 목표로 열렸다. 2020년 대회는 L2RPN 2020 WCCI 챌린지라는 이름으로 특정 국가 수도 규모의 복잡한 전력망을 72시간 동안 관리자의 개입 없이 스스로 안전하고 효율적으로 운영될 수 있는 인공지능 전력망 관리 에이전트를 개발하는 것을 목표로 열렸다. 시간에 따른 공급-수요의 변화, 시설 유지보수 및 재난에 따른 급작스러운 단전 등 다양한 시나리오에 대해 전력망 운영관리 능력의 평가가 이뤄졌다.
< 그림 2. 전력망의 개요도 >
김 교수 연구팀은 이번 2020년 대회에서 전력망 구조를 효과적으로 반영할 수 있는 그래프 신경망 모델 기반의 강화학습 에이전트를 개발해 참가했다. 기존의 에이전트들은 소규모의 전력망에서만 적용 가능하다는 한계가 있었지만, 김 교수 연구팀은 국가 수도 규모의 복잡한 전력망에도 적용 가능한 에이전트를 개발했다. 연구팀이 개발한 인공지능 전력망 운영관리 에이전트는 주어진 모든 테스트 시나리오에 대해 안전하고 효율적으로 전력망을 운영해 최종 1위의 성적을 거뒀다. 우승팀에게는 상금으로 미국 실리콘밸리에 있는 GEIRI North America를 방문할 수 있는 여행경비와 학회참가 비용 3,000달러가 주어진다. 연구진은 앞으로도 기술을 고도화해 국가 규모의 전력망과 다양한 신재생 에너지원을 다룰 수 있도록 확장할 계획이다.
< 그림 3. 전력망 최적화 문제의 개요 >
< 그림 4. 딥러닝을 이용한 전력망 제어 에이전트 학습 구조 >
한편 이번 연구는 과기정통부 에너지 클라우드 기술개발 사업의 지원으로 설치된 개방형 에너지 클라우드 플랫폼 연구단과제로 수행됐다. (연구단장 KAIST 전산학부 문수복 교수)
※ 대회 결과 사이트 관련 링크: https://l2rpn.chalearn.org/competitions
※ 개방형 에너지 클라우드 플랫폼 연구단 사이트: https://www.oecp.kaist.ac.kr
“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다. 이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입해, 그 효과와 실용 가능성을 실제 교육
2025-06-05우리 대학 인공지능반도체대학원은 27일(화) 오전 대전 오노마 호텔에서 ‘제3회 한국인공지능시스템포럼(KAISF)’ 조찬 강연회를 성공적으로 개최하였다. 이번 강연회는 ‘휴머노이드 로봇의 혁명: 인간과 로봇의 공존 시대’를 주제로, 인공지능(AI)과 로봇 기술의 융합이라는 최신 이슈에 대한 깊이 있는 통찰을 제공하는 자리로 마련되었다. 총 60명의 산학 전문가가 참석한 가운데, LG전자 백승민 소장의 초청 강연은 현장 참석자들의 높은 관심과 호응을 이끌어냈다. 백승민 LG전자 소장은 이날 강연에서 AI 기술을 활용한 생활형 로봇의 진화, 생성형 AI를 접목한 자율지능 향상 사례, 그리고 로봇 플랫폼의 통합 가속화 전략 등을 중심으로 발표했다. 특히 인간과 자연스럽게 상호작용하는 휴머노이드 로봇의 서비스화 실증사례는 산업계 리더들에게 실질적인 인사이트를 제공하였다. 이어 “AI 기술은 이제 실제 로봇의 형태로 현실 공간
2025-05-27인공지능 분야에서 지식 체계나 데이터베이스를 그래프로 저장하고 활용하는 사례가 급증하지만, 일반적으로 복잡도가 높은 그래프 연산은 GPU 메모리의 제한으로 인해 매우 작은 규모의 그래프 등 비교적 단순한 연산만 처리할 수 있다는 한계가 있다. 우리 연구진이 25대의 컴퓨터로 2,000초가 걸리던 연산을 한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크를 개발하는데 성공했다. 우리 대학 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 1조 간선 규모의 초대규모 그래프에 대해 다양한 연산을 고속으로 처리할 수 있는 스케줄러 및 메모리 관리 기술들을 갖춘 일반 연산 프레임워크(일명 GFlux, 지플럭스)를 개발했다고 27일 밝혔다. 연구팀이 개발한 지플럭스 프레임워크는 그래프 연산을 GPU에 최적화된 단위 작업인 ‘지테스크(GTask)’로 나누고, 이를 효율적으로 GPU에 배분 및 처리하는 특수한 스케줄링
2025-05-27음악 창작자가 초기 아이디어를 생각하거나 창작 중간 막힐 때, 이를 같이 해결해 주고 다양한 음악적 방향 탐색에 실질적인 도움을 주는 동료가 있다면 얼마나 좋을까? KAIST 연구진이 이런 음악 창작을 돕는 동료 작가와 같은 AI 기술을 개발했다. KAIST(총장 이광형)는 전기및전자공학부 이성주 교수 연구팀이 AI 기반 음악 창작 지원 시스템 어뮤즈(Amuse)를 개발하였다. 이 연구 결과는 4월 26일부터 5월 1일까지 일본 요코하마에서 열린 인간-컴퓨터 상호작용 분야 세계 최고 권위의 국제학술대회인 CHI(ACM Conference on Human Factors in Computing Systems)에서 전체 논문 중 상위 1%에게만 수여되는 최우수 논문상(Best Paper Award)을 수상했다고 7일 밝혔다. 이성주 교수 연구팀이 개발한 어뮤즈(Amuse) 시스템은 텍스트, 이미지, 오디오와 같은 다양한 형식의 영감을 입력하면 이를 화성 구조(코드 진행)로 변환해
2025-05-07우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czec
2025-04-18