< (왼쪽부터) 뇌인지과학과 이상완 교수, 양민수 박사과정 >
뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다.
우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다.
현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서는 현재 본인의 판단이 맞는지를 계속 검증하고 수정할 수 있어야 한하는데 뇌과학 및 인공지능 분야에서 다양한 연구가 있었으나 아직까지 완벽한 해법이 알려진 바가 없다.
연구팀은 스스로 세운 가설을 바탕으로 다음 상황을 예측하고 확인하는 행동 패턴을 동역학적으로 프로파일링 할 수 있는 새로운 방식을 고안했고, 이를 바탕으로 전통적인 강화학습 이론과 최신 인공지능 알고리즘 모두 동물의 관련 행동을 제대로 설명하지 못한다는 것을 발견했다.
이어 연구팀은 동물의 현재 상황에 대한 가설을 세우고, 가설의 예측 오류를 바탕으로 행동 전략을 비대칭적으로 업데이트하는 새로운 적응형 강화학습 이론과 모델을 제안했다.
< 그림. 1. 가설 검증 뇌기반 인공지능 모델 개념도. 추정한 현재 맥락에 대한 의심을 스스로 검증하는 동적 프로세스를 표현함. 스스로의 의심을 확인하는 사건을 인지하는 경우 빠르게 새로운 가설을 받아들이는 학습과정을 설명하는 모델로써, 인간과 동물의 메타인지 기반 능력을 프로파일링하는데 활용할 수 있음. 이 모델은 최신 인공지능 모델 대비 최신 인공지능 모델 대비 최대 31%, 평균 15% 더 높은 설명력을 보임. >
최신 인공지능 모델은 효율적 문제 해결에 집중하다 보니 인간이나 동물의 행동을 잘 설명하지 못하는 경우가 많은 반면, 제안 모델은 예상치 못한 사건에 대한 동물의 행동을 최신 인공지능 모델 대비 최대 31%, 평균 15% 더 잘 예측함을 보였다.
특히, 이 결과는 기존 연구에서 발표된 네 가지 서로 다른 동물 실험 데이터(two-step task, two-armed bandit task, T-maze task, two-armed bandit task with MSN inactivation) 분석을 통해 일관성 있게 재현되었다.
연구팀은 더 나아가 중뇌 기저핵* 선조체**속 중간크기 가시뉴런***이 가설 기반 적응형 강화학습 과정에 관여함을 밝혔다. 직접 경로 가시뉴런들은 예상한 사건을 마주한 경험을, 간접 경로 가시뉴런들은 예상하지 못한 사건을 마주한 경험을 부호화해 행동 전략을 조절함을 보였다.
*기저핵(Basal Ganglia): 대뇌피질, 시상, 뇌간 등 운동 조절 및 학습하는 기능을 담당하는 뇌 부위
**선조체(Striatum): 기저핵의 일부로 가치 평가 및 강화학습 능력과 관련된 부위
***가시뉴런Medium Spiny Neuron, MSN): 선조체의 약 90%를 차지하는 대표적 신경세포로 신경활동을 억제하는 특징을 가지고 있음
본 연구 결과는 뇌의 맥락 추론 방식이 대규모 인공지능 모델과 근본적으로 다르다는 것을 보여준다. 챗지피티(ChatGPT)나 딥시크와 같은 인공지능 모델은 사용자 입력으로부터 맥락 정보를 추정하고 이를 바탕으로 필요한 전문가 시스템에 매칭하며 (딥시크 모델은 강화학습을 사용하여 매칭), 새로운 정보가 들어올 때까지는 이것이 맞다고 가정한다.
이와 달리 뇌는 스스로 추정한 맥락(가설)을 의심하고, 의심이 확인되는 즉시 새로운 맥락을 적극 받아들인다. 이는 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간과 유사한 추론엔진을 구성할 수 있는 새로운 방향성을 제시한다.
본 연구는 뇌과학-인공지능 융합연구로서, 실제 분야에 널리 활용될 수 있다. 예를 들어, 인간의 동역학적 행동 프로파일링 기술을 이용하면 개개인의 가설 수립, 검증 학습 능력 분석이 가능하므로, 맞춤형 교육 커리큘럼 디자인, 인사 및 인력관리 시스템, 인간-컴퓨터 상호작용 분야에 바로 적용할 수 있다.
제안된 적응형 강화학습 모델은 ‘뇌처럼 생각하는 인공지능’기술로서 인간-인공지능 가치 정렬 (Value alignment) 문제 해결에 활용될 수 있다. 또한 이 과정에 관여하는 것으로 알려진 기저핵 내 보상학습 회로와 관련된 중독이나 강박증과 같은 정신질환의 뇌과학적 원인 규명에 활용될 수 있다.
연구 책임자인 이상완 교수는 "이번 연구는 인공지능의 강화학습 이론만으로 설명할 수 없는 뇌의 가설 기반 적응학습 원리를 밝혀낸 흥미로운 사례ˮ라면서 "스스로 의심하고 검증하는 뇌과학 이론을 대규모 인공지능 시스템 설계와 학습 과정에 반영하면 신뢰성을 높일 수 있을 것ˮ이라고 말했다.
< 그림. 2. 가설을 세워 스스로 검증하는 능력을 동역학적으로 프로파일링하는 기술 >
뇌인지공학 프로그램 양민수 박사과정 학생이 1 저자, 생명과학과 정민환 교수가 공동 저자, 뇌인지과학과 이상완 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스 (Nature Communications)‘ 2월 20일자로 게재됐다. (논문명: Striatal arbitration between choice strategies guides few-shot adaptation) DOI: 10.1038/s41467-025-57049-5)
한편 이번 연구는 과학기술정보통신부 정보통신기획평가원 SW스타랩, 한계도전 R&D 프로젝트, 한국연구재단 중견연구자 및 KAIST 김재철AI대학원 사업 지원을 받아 수행됐다.
원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적
2025-07-02우리 몸의 면역세포인 T세포를 활성화시켜 암세포를 제거하도록 유도하는 첨단 치료법인 ‘면역항암제’는 가장 치명적인 뇌종양 ‘교모세포종(Glioblastoma)’에는 거의 반응하지 않고, 치료에 대한 저항성이 높아 단독 치료로는 효과가 매우 제한적이라는 한계가 있었다. 이에 우리 연구진이 장내 미생물과 그 대사산물을 활용해 뇌종양의 면역치료 효과를 높일 수 있는 새로운 치료 전략을 세계 최초로 입증했다. 향후 미생물을 기반으로 한 면역치료 보완제 개발에 대한 가능성도 보여줬다. 우리 대학 생명과학과 이흥규 교수 연구팀이 장내 미생물 생태계 변화에 주목해 교모세포종 면역치료의 효율을 크게 높이는 방법을 발굴하고 이를 입증했다고 1일 밝혔다. 연구팀은 교모세포종이 진행되면서 장내에서 중요한 아미노산인 ‘트립토판(tryptophan)’의 농도가 급격히 줄어들고, 이로 인해 장내 미생물 생태계가 변화한다는 점에 주목했
2025-07-01우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30새 정부 출범과 함께 AI 및 과학기술 분야에 대한 사회적 관심이 크게 높아진 가운데, 우리 대학은 과학기술을 기반으로 국가 혁신을 주도하고 인류의 문제 해결에 앞장서는‘AI 중심 가치 창출형 과학기술특성화대학’으로 거듭날 계획임을 24일 밝혔다. 대한민국이 기술 주도형 사회로 대전환을 맞이하는 시점에서 KAIST는 지난 반세기 동안 국가 발전사의 '스타터킷(Starter Kit)' 역할을 수행해온 경험을 토대로, 단순한 교육·연구기관을 넘어 새로운 사회적 가치를 창출하는 글로벌 혁신 허브로의 도약을 준비하고 있다. 특히 우리 대학은 대한민국이 인공지능 주요 3개국(G3)에 도약할 수 있도록 전 국민이 소외 없이 AI를 활용할 수 있는 'AI 기본사회' 실현을 비전으로 제시했다. 이를 위해 KAIST가 주관하는 대한민국을 대표하는 ‘국가AI연구거점’사업(책임자 김기응)을 통해 AI 기술을 기반으로 산업 경쟁력을 제고하고 사회
2025-06-24