< PnPXAI 프레임워크 개념도 >
KAIST 설명가능 인공지능연구센터(센터장 최재식 교수)는 별도의 복잡한 설정이나 전문 지식 없이도 손쉽게 AI모델에 대한 설명성을 제공할 수 있는 플러그앤플레이(Plug-and-Play) 방식의 설명가능 인공지능 프레임워크를 개발해, 이를 27일 오픈소스로 공개했다.
설명가능 인공지능(Explainable AI, 이하 XAI)이란 AI 시스템의 결과에 영향을 미치는 주요 요소를 사람이 이해할 수 있는 형태로 설명해주는 제반 기술을 말한다. 최근 딥러닝 모델과 같이 내부 의사 결정 프로세스가 불투명한 블랙박스 AI 모델에 대한 의존도가 커지면서 설명가능 인공지능 분야에 대한 관심과 연구가 증가했다. 그러나 지금까지는 연구자와 기업 실무자들이 설명가능 인공지능 기술을 활용하는 것이 몇 가지 이유로 쉽지 않았다. 우선, 딥러닝 모델의 유형별로 적용 가능한 설명 알고리즘들이 서로 달라서 해당 모델에 적용할 수 있는 설명 알고리즘이 무엇인지 알기 위해서는 XAI에 대해 어느 정도 사전지식이 필요하기 때문이다. 두번째로, 대상 모델에 적용할 수 있는 설명 알고리즘을 파악하더라도, 각 알고리즘마다 다른 하이퍼 파라미터를 어떻게 설정해야 최적의 설명 결과를 얻을 수 있을지 이해하는 것은 여전히 어려운 과제이다. 세번째로는 적용된 다수의 설명 알고리즘들 중에 어떤 알고리즘이 가장 정확하고 신뢰할 수 있는 것인지를 정량적으로 평가하기 위해서 또다른 툴을 이용해야 하는 번거로운 과정이 뒤따라야 했다. 이번에 오픈소스로 공개된 플러그앤플레이 설명가능 인공지능 프레임워크(Plug-and-Play XAI Framework, 이하 PnPXAI 프레임워크)는 이러한 어려움을 해결하고자 개발되었으며, AI의 신뢰성이 중요한 다양한 AI시스템 연구개발 현장에서 유용한 도구로 활용될 것으로 기대된다.
PnPXAI 프레임워크는 적용 가능한 설명알고리즘을 자동으로 추천하기 위해 모델 구조를 인식하는 탐지모듈(Detector)과 적용가능한 설명 알고리즘을 선별하는 추천모듈(Recommender), 설명 알고리즘을 최적화하는 최적화모듈(Optimizer) 및 설명 결과 평가모듈(Evaluator)로 구성되어 있다. 사용자는 ‘자동설명(Auto Explanation)’ 모드에서 대상 모델과 데이터만 입력하면 설명 알고리즘의 시각적 결과(히트맵 또는 모델 결과에 영향을 끼친 중요한 속성들)와 설명의 정확도를 한번에 확인할 수 있다. 사용자들은 자동설명 모드를 통해 XAI에 대한 기본지식과 사용법을 숙지한 이후에는 프레임워크에 포함된 설명 알고리즘과 평가지표를 원하는 방식으로 자유롭게 활용할 수 있다.
현재 프레임워크에는 이미지, 텍스트, 시계열, 표 데이터 등 다양한 데이터유형을 지원하는 설명 알고리즘들이 제공되고 있다. 특히, 서울대학교(2세부 연구책임자 한보형교수)와 협력을 통해 뇌MRI 기반 알츠하이머병 진단모델에 대한 반예제 설명 알고리즘을 지원하였고, 서강대학교(3세부 연구책임자 구명완교수)와 공동연구를 통해 마비말장애 진단모델에 PnPXAI 프레임워크의 설명 알고리즘을 적용하여 AI 기반 의사결정지원 시스템에서 설명성을 성공적으로 구현하기도 했다. 또한, 한국전자통신연구원(4세부 연구책임자 배경만박사)에서 개발한 LLM(대규모언어모델) 생성결과의 사실성을 검증하는 알고리즘을 프레임워크에 통합하는 등 지원 범위를 지속적으로 확장하고 있다.
KAIST 설명가능 인공지능연구센터 최재식 센터장은 “기존 설명가능 인공지능 도구들의 한계를 해결하고, 다양한 도메인에서 실질적으로 활용하기 쉬운 도구를 제공하기 위해 국내 최고의 연구진과 수년간 협력한 성과”라며, “이 프레임워크 공개를 통해 AI 기술의 신뢰성을 높여 상용화에 기여하는 것은 물론, 우리 연구센터가 설명가능 인공지능 분야의 글로벌 연구 생태계를 선도하는 중요한 발판을 마련했다는 점에서 의의가 있다”고 밝혔다.
PnPXAI 프레임워크는 현재 국내 및 국제특허 출원을 완료했으며, Apache 2.0 라이선스를 준수하는 경우 누구나 깃허브 페이지[링크]를 통해 사용할 수 있다. 한편, 이 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구이다. (No. RS-2022-II220984, 플러그앤플레이 방식으로 설명가능성을 제공하는 인공지능 기술 개발 및 인공지능 시스템에 대한 설명 제공 검증)
회의실에 여러 사람이 동시에 모여 회의하는 경우처럼, 다수의 객체가 동시에 상호작용하는 고차원 상호작용(higher-order interaction)은 다양한 분야에서 발생하며, 실세계의 복잡한 관계를 담고 있다. 하지만 기술적 제약으로 인해 많은 분야에서는 주로 개별 쌍 간의 저차원 정보만 수집돼, 전체 맥락이 손실되고 활용에 제약이 따랐다. KAIST 연구진이 이처럼 불완전한 정보만으로도 고차원 상호작용을 정밀하게 복원*하는 AI ‘마리오(MARIOH)’를 개발하며, 소셜 네트워크, 뇌과학, 생명과학 등 다양한 분야에서 혁신적 분석 가능성을 열었다. *복원: 사라지거나 관측되지 않은 원래 구조를 추정/재구성하는 것 우리 대학 김재철AI대학원의 신기정 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(이하 MARIOH, Multiplicity-Aware Hypergraph
2025-08-05이차전지 양극 소재는 높은 충전 속도, 에너지 밀도, 안정성 등 어려운 기준들을 전부 충족해야 하기 때문에 소재 개발을 위해서는 수많은 소재 후보군을 고려해 탐색을 진행해야만 한다. 국내 산학 협력 연구진이 AI 및 자동화 시스템을 활용해 연구자의 개입 없이 이차전지 양극 소재의 개발을 진행하는 자율 탐색 실험실*을 구축했다. 이를 통해 개발 과정 중 발생하는 연구자의 노동을 최소화하며 탐색 기간을 93% 단축했다. *자율 탐색 실험실: 자율적으로 실험을 설계, 수행, 분석하여 최적의 소재를 탐색하는 플랫폼 우리 대학 신소재공학과 서동화 교수 연구팀이 포스코홀딩스 미래기술연구원(원장 김기수) 에너지소재연구소 LIB소재연구센터 연구팀과 산학 협력 연구를 통해, AI 및 자동화 기술을 활용해 이차전지 양극 소재를 탐색하는 자율 탐색 실험실을 구축했다고 3일 밝혔다. 이차전지 양극 소재 개발은 필연적으로 시료의 무게를 칭량하고 이송하는 정량, 혼합, 소결* 및 분석 과정을 거
2025-08-05우리 대학은 7월 31일 오전 국회의원회관에서 ‘인공지능 대전환(AX)의 미래: 피지컬 AI’를 주제로, 한국의 AI 반도체 및 제조업 강점을 활용한 기술패권 전략을 논의하기 위한 초당적 정책 포럼인 ‘제1회 국가미래전략기술포럼’을 성공적으로 개최했다고 31일 밝혔다. 이번 포럼은 KAIST가 주관하고, 국회 과학기술정보방송통신위원회 간사 최형두 의원(국민의힘)과 산업통상자원중소벤처기업위원회 위원 김한규 의원(더불어민주당)이 공동 주최하였다. 본 포럼은 10월을 제외하고 매월 한 차례씩 총 5회 개최되는 국가미래전략기술포럼의 첫 출발점이다. 포럼의 대주제인 ‘인공지능 대전환(Artificial Intelligence Transformation, AX)’은 생성형 AI의 확산으로 산업, 경제, 사회 전반에 걸쳐 촉발된 구조적 변화에 대응하기 위해 기획됐다. 제1회 포럼의 주제는 ‘피지컬 AI(P
2025-07-31우리 대학 전기및전자공학부 교수이자 ICT 석좌교수인 유회준 교수가 2025년 대한민국학술원 신임회원으로 선출됐다. 유 교수는 7월 11일 개최된 대한민국학술원 총회를 통해 공식 선출되었으며, 전자공학 분야에서의 지속적인 연구 성과와 학술 기여를 바탕으로 선임되었다. 당월 18일 서울 서초구에 위치한 대한민국학술원에서 열린 신임회원 회원증서 수여식에 참석하여 선임장을 수여받았다. 대한민국학술원은 1954년 설립된 교육부 산하의 국가 학술기관으로, 국내 학문 발전에 이바지한 석학을 대상으로 매년 각 학문 분과별로 극소수의 신임회원만을 엄정한 심사를 통해 선발하고 있다. 올해는 전국에서 총 8명이 신임회원으로 선정되었으며, 유 교수는 자연과학분과 제3분과(공학)에서 유일하게 선출되었다. 학술원은 학문적 업적이 탁월하고 해당 분야의 발전에 기여한 석학을 회원으로 선출하여, 이들의 연구를 지원하고 학술 정책 자문, 국내외 학술 교류, 우수학술도서 선정, 학술원상 시상 등의 다양한
2025-07-22확산모델(diffusion model)은 많은 AI 응용에 활용되고 있으나, 효율적인 추론-시간 확장성(inference-time scalability)*에 대한 연구가 부족했다. 이에 연구진은 확산모델에서도 고성능 고효율 추론이 가능한 신기술을 개발했다. 이 기술은 기존 모델이 한번도 성공하지 못한 초대형 미로찾기 태스크에서 100%의 성공률을 기록하며 성능을 입증했다. 이번 성과는 향후 지능형 로봇, 실시간 생성 AI 등 실시간 의사결정이 요구되는 다양한 분야에서 핵심 기술로 활용될 수 있을 것으로 기대된다. *추론-시간 확장성(inference-time scalability): AI 모델이 추론 단계에서 사용할 수 있는 계산 자원의 양에 따라 성능을 유연하게 조절할 수 있는 능력을 의미한다. 우리 대학 전산학부 안성진 교수 연구팀이 딥러닝 분야 세계적 석학인 몬트리올 대학교 요슈아 벤지오(Yoshua Bengio) 교수와의 공동연구를 통해, 인공지능 확산 모델의 추
2025-07-21