-
정우철 교수, 5분 코팅만으로 연료전지 전극반응성 1천배 향상 기술 개발
〈 정 우 철 교수, 서 한 길 박사과정 〉
우리 대학 신소재공학과 정우철 교수 연구팀이 5분 이내의 산화물 코팅만으로 연료전지의 수명과 성능을 획기적으로 향상시킬 수 있는 전극 코팅 기술을 개발했다.
서한길 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 5일자 표지 논문(Inside Front Cover)에 게재됐다. (논문명 : Exceptionally Enhanced Electrode Activity of (Pr,Ce)O2-δ-Based Cathodes for Thin-Film Solid Oxide Fuel Cells, 박막 고체산화물연료전지용 (Pr,Ce)O2-δ 기반 공기극의 향상된 전극 활성)
연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 특히 고체산화물 연료전지는 다른 연료전지에 비해 발전효율이 높고 값비싼 수소 이외에 다양한 연료를 직접 사용할 수 있다는 장점을 가져 세계적으로 큰 주목을 받고 있다.
하지만 고체산화물 연료전지를 구동하기 위해서는 700℃ 이상의 높은 작동온도가 필요하며 이는 소재 및 시스템 비용의 증가, 장시간 구동 시 성능 저하 등의 문제를 일으켜 연료전지의 상용화에 걸림돌이 되고 있다.
최근에는 박막 공정을 도입해 전해질의 두께를 수백 나노미터 크기로 줄임으로써 작동온도를 600℃ 이하로 크게 낮추고 가격 경쟁력을 확보하려는 박막형 고체산화물연료전지가 새로운 해결책으로 제시되고 있지만, 낮은 작동온도에서 급격히 떨어지는 전극 성능의 한계를 극복하지 못하고 있다.
연구팀은 공기극으로 사용되는 백금 박막의 산소환원반응 활성점을 극대화하고, 백금 전극이 고온에서 응집되는 현상을 막기 위해 산화물 코팅 기술을 개발했다.
연구팀은 전자와 산소이온 모두에 대한 높은 전도성과 산소환원 반응에 대한 뛰어난 촉매 특성을 가진 ‘프라세오디뮴이 도핑된 세리아((Pr,Ce)O2-δ)라는 새로운 코팅 소재를 전기화학도금을 통해 백금 표면에 코팅하는 데 성공했다. 이를 통해 기존 백금 박막 전극에 비해 1천 배 이상의 성능을 향상시켰다.
추가적으로 연구팀은 백금을 전혀 사용하지 않고 (Pr,Ce)O2-δ의 나노구조화를 제어하는 것만으로도 고성능의 박막형 고체산화물연료전지 공기극을 구현하는데 성공했다.
정 교수는“이번 연구에서 사용된 전극 코팅 기술은 쉽고 대량생산이 가능한 전기화학도금을 활용했기 때문에 그 기술적 가치가 매우 뛰어나다”며 “향후 박막형 고체산화물연료전지의 백금 전극을 대체할 수 있어 가격 저감을 통한 시장경쟁력 제고가 기대된다.”고 말했다.
이번 연구는 한국에너지기술평가원과 한국전력공사의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 에너지 머티리얼즈 표지(Inside Front Cover)
그림2. 코팅된 (Pr,Ce)O2-δ 나노구조체 유무에 따른 전극성능 변화
2018.07.09
조회수 17118
-
김신현 교수, 풍뎅이 외피 본뜬 머리카락 굵기 레이저 공진기 개발
〈 이상석 박사과정, 김신현 교수, 김종빈 박사과정 〉
우리 대학 생명화학공학과 김신현 교수 연구팀이 한국화학연구원 김윤호 박사와의 공동 연구를 통해 머리카락 굵기 수준의 캡슐형 레이저 공진기를 개발했다.
연구팀의 캡슐형 레이저 공진기는 크리슈나 글로리오사 풍뎅이(Chrysina gloriosa, 이하 글로리오사 풍뎅이)의 외피와 동일한 구조를 미세 캡슐에 탑재한 기술로 치료용 레이저 등 광범위한 분야에 적용 가능할 것으로 기대된다.
이상석 박사과정이 1저자로 참여한 이번 연구 결과는 사이언스 자매지 ‘사이언스 어드밴시스(Science Advances)’ 6월 22일자 온라인 판에 게재됐다. (논문명 : Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals , 파장 가변성과 모양 재구성성을 갖는 콜레스테릭 액정 기반의 캡슐형 레이저 공진기)
글로리오사 풍뎅이는 좌측으로 원편광된 빛을 비추면 나뭇잎과 비슷한 초록색을 띠고, 우측으로 원편광된 빛을 비추면 아무 색도 보이지 않는다. 이러한 독특한 광학 특성은 포식자들을 피해 글로리오사 풍뎅이 간의 통신 수단으로 활용된다고 알려져 있다.
글로리오사 풍뎅이가 편광 방향에 따라 다른 색을 보이는 이유는 외피에 왼쪽 방향으로 휘감아 도는 나선구조가 존재하기 때문이다. 이러한 나선구조는 동일한 방향의 원편광 빛만을 선택적으로 반사해 반사색을 보인다.
글로리오사 풍뎅이가 가진 나선구조를 활용하면 인공적으로 액정을 구현하는 것이 가능하다. 이러한 액정 나선구조는 글로리오사 풍뎅이의 외피처럼 편광 방향에 따른 반사 특성을 보이며 특정 파장의 빛을 제어할 수 있기 때문에 보통의 레이저와 달리 거울 없이도 레이저 공진기를 구현할 수 있다.
이러한 액정을 활용한 레이저 공진기는 필름 형태로 구현되곤 했는데 필름 형태의 공진기는 레이저의 발광 방향이 고정돼 있고 크기가 커 미세한 부분에 사용하기에는 한계가 있었다.
연구팀은 액정 레이저 공진기를 머리카락 크기 수준의 캡슐 내부에 제작해 목표 지점에 주사하거나 이식할 수 있는 새로운 형태의 레이저 공진기를 개발했다.
캡슐형 레이저 공진기는 삼중 구조로 구성된다. 코어의 액정 분자와 발광 분자의 혼합물을 액체 상태의 배향층과 고체 상태의 탄성층이 겹으로 감싸는 형태이다.
배향층은 코어의 액정 분자가 높은 배향 수준을 갖게 하는 역할을 통해 레이저 공진기의 성능을 향상시키고, 탄성층은 캡슐의 기계적 안정성을 높인다. 연구팀은 미세유체기술을 이용해 복잡한 삼중 구조를 제어된 방식으로 설계했다.
캡슐형 레이저 공진기는 공기 중에서도 안정적으로 구형을 유지하며 레이저 발광이 캡슐 표면을 따라 수직 발생해 3차원의 전방향(omnidirectional) 레이저 발광이 가능하다.
또한 캡슐형 공진기를 기계적으로 변형시켜 발광 방향과 레이저의 세기를 조절할 수 있고 온도 조절을 통해 액정의 나선구조 간격을 변화시키면 레이저 발광의 파장도 조절이 가능하다.
김 교수는 “개발한 새로운 형태의 캡슐형 레이저는 작은 크기와 높은 기계적 안정성을 가져 주사 및 이식이 가능하며 국부적인 영역에만 조사할 수 있는 치료용 레이저로 사용 가능하다”며 “자연에 존재하는 C.글로리오사 풍뎅이의 외피 구조를 모방해 발전시킨 것으로 인간은 자연에서부터 배우고 공학적으로 창조하게 됨을 증명한 연구이다”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업과 X-project 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 좌원편광 빛과 우원편광 빛에 노출된 C. gloriosa 풍뎅이의 사진
그림2. 캡슐형 레이저 공진기의 구성 (좌) 및 광학 현미경 사진 (우)
2018.07.03
조회수 11570
-
성남-KAIST 차세대 ICT 연구센터 및 산학협력단 브랜치 오피스 개소식, 2일 가져
우리대학과 성남시가 4차 산업 기술혁신 생태계 기반 강화를 위해 협력추진하고 있는 ‘성남-KAIST 차세대 ICT 연구센터 및 KAIST 산학협력단 브랜치 오피스(Branch Office)’ 개소식이 지난 2일 성남산업진흥원(분당구 정자동 킨스타워 정글온 19층)에서 개최됐다.
이 날 개소식에는 신성철 총장을 비롯해 은수미 성남시장, 김병관 국회의원, 김병욱 국회의원, 진대제 성남FWC 위원장 등 내외빈과 함께 유관기관, 기업, 시민 등 약 80명이 참석했다. 우리대학은 성남시를 거점으로
하는 4차 산업혁명 선도도시 구현을 위해 작년 8월 성남시와 MOU를 체결하고, 같은 해 11월 업무협약 체결을 계기로 우리대학 산학협력단과 전기및전자공학부가 성남산업진흥원과의 협력을 통해 성남시 소재 중소‧벤처기업을 대상으로 인공지능 집중교육, EE Co-op 프로그램, K-Global 사업 등 다양한 산학협력 프로그램을 지원하고 있다.
우리대학은 또 이번 '성남-KAIST 차세대 ICT 연구센터 및 산학협력단 Branch Office' 개소를 계기로 교수 및 연구원 등 전문인력이 성남시에 상주를 통해 미래자동차, 의료 및 헬스케어 연구 플랫폼을 구축하는 한편 성남시 중소‧벤처기업을 대상으로 △인공지능 집중교육 △ICT 리더 포럼 △현장지원 프로그램 △글로벌 마케팅 프로그램 등을 본격적으로 운영할 계획이다.
이와 함께 성남시는 2020년 7월경 준공되는 (가칭)성남글로벌 ICT 플래닛 500평 규모의 공간으로 현 센터를 이전하는 한편 우리대학 석‧박사급 상주 연구인력 50여명과 지도교수 25명을 유치, 입주시켜 성남시 소재 기업들과의 효율적인 협업을 통해 기술혁신 거점을 구축할 계획이다.
2018.07.03
조회수 10751
-
고규영 특훈교수, 호암상금 1억원 기부
우리 대학 의과학대학원 고규영 특훈교수가 호암상 상금 1억원을 KAIST 발전기금으로 쾌척했다.
혈관생물학 분야의 세계적인 권위자인 고규영 교수는 지난 1일 호암아트홀에서 열린 ‘제28회 호암상’ 시상식에서 의학상을 수상했다. 고 교수는 암 혈관을 제거하는 대신 정상화시키는 역발상 접근으로 항암제 전달 효율성을 높여 암의 성장과 전이를 줄일 수 있는 새 패러다임을 제시한 공을 인정받았다.
고 교수는 “기초의학자로서 연구 성과를 인정받아 호암상을 수상하게 되어 큰 영광이다”며 “지속적 발전을 위해 더욱 연구에 박차를 다해 갈 것이다”이라며 수상금의 일부를 연구의 원동력이 된 의과학대학원에 기부했다.
특히 고 교수는 지난 2012년에는 제5회 아산의학상을, 2011년에는 제7회 경암상을, 2007년에는 제17회 분쉬의학상 수상한 바 있으며, 수상시마다 매번 상금을 의과학대학원 발전기금으로 기부해 오고 있다.
신성철 총장은 “의미 있는 수상금을 의과학대학원 발전기금으로 흔쾌히 쾌척해주셔서 감사드린다”며 “고 교수의 기부금은 세계적인 의과학자를 키우고 있는 의과학대학원 발전에 큰 도움이 될 것”이라고 밝혔다.
고 교수는 전북대 의대에서 박사 학위를 받고 미국 코넬대학과 인디애나 주립대에서 박사후 과정을 거친 뒤 전북대 의대 교수, 포스텍 교수를 역임하고 현재 KAIST 의과학대학원 특훈 교수와 기초과학연구원 혈관 연구단장으로 재직 중이다.
2018.06.19
조회수 12480
-
이상엽 특훈교수, 덴쿼츠 기념강연 상 수상
〈 이 상 엽 특훈교수 〉
우리 대학 생명화학공학과 이상엽 특훈교수(KI연구원장)가 덴쿼츠 기념 강연(P.V. Danckwert’s Memorial Lecture) 2018년도 수상자로 선정됐다.
1985년 제정된 덴쿼츠 기념강연 상은 화학공학과학(Chemical Engineering Science)지, 국제 화학공학원(Institution of Chemical Engineers), 미국 화학공학회(American Institute of Chemical Engineers), 유럽 화학공학연합(European Federation of Chemical Engineering)이 공동으로 주관한다.
전 세계 화학공학 연구자 중 화학공학의 발전에 크게 기여한 사람을 선정해 유럽 화학공학연합회와 미국 화학공학회에서 격년으로 시상하고 수상자는 기념 강연을 한다.
덴쿼츠 기념강연 상은 제정 이후 닐 아문슨(Neal Amundson), 옥타브 레벤스필(Octave Levenspiel), 러더포드 아리스(Rutherford Aris) 등 화학공학의 아버지로 불리는 연구자들이 수상해 왔다. 1989년 중국의 곽무손(Mooson Kwauk) 박사를 제외하고는 모두 미국과 유럽의 화학공학자들이 기념강연자로 선정됐다.
이 교수의 기념강연 상 선정을 통해 우리나라도 수상자를 배출함으로써 화학공학의 위상을 높이는 계기가 됐다.
시상식과 기념강연은 오는 10월 말 미국 피츠버그에서 열리는 미국화학공학과 연례총회에서 있을 예정이며, 이 교수는 ‘UN의 지속가능개발목표를 달성하기 위한 바이오테크놀로지’를 주제로 강연을 할 예정이다.
이 교수는 생명공학 분야의 권위자로 특히 대사공학을 이용한 환경친화적이고 지속 가능한 화학물질 생산기술 개발에서 세계적 업적을 이룩한 공을 인정받았다.
이 교수는 최근에도 생분해성 방향족고분자의 발효 생산 기술, 인공지능을 이용한 약물 대 약물, 약물 대 음식 간 상호작용 규명기술, 경북대 연구진과 공동으로 PET 분해효소 구조 규명 기술 개발 등 바이오테크놀로지를 이용해 지속 가능한 화학공학과 미래 헬스케어 관련 연구에서 세계적으로 주목받는 연구 결과를 내고 있다.
2018.06.18
조회수 10506
-
김희탁, 정희태 교수, 수명 5배 늘린 바나듐레독스-흐름전지 개발
〈 김수현 박사과정, 김희탁 교수, 최정훈 박사과정 〉
우리 대학 생명화학공학과 정희태, 김희탁 교수 공동 연구팀(차세대배터리센터)이 용량 유지율 15배, 수명을 5배 향상시킨 바나듐레독스-흐름전지를 개발했다.
신재생 에너지의 발전과 함께 이를 통해 생산된 에너지를 효율적이고 안전하게 저장할 수 있는 대용량 에너지 저장장치의 필요성이 커지고 있다. 바나듐레독스-흐름전지는 폭발 위험이 없는 이차전지로 대용량화에 적합해 기존 에너지 저장장치를 대체할 수 있을 것으로 기대된다.
김수현, 최정훈 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano letters)’ 5월 3일자 온라인 판에 게재됐다. (논문명 : Pore Size-Tuned Graphene Oxide Framework as lon-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox Flow Batteries)
기존의 바나듐레독스-흐름전지는 과불소계 분리막의 활물질 투과도가 높아 충․방전 효율과 용량 유지율이 매우 낮다는 한계가 있다. 이를 해결하기 위해 낮은 활물질 투과도를 갖는 탄화수소계 분리막을 적용시키고자 했지만 활물질인 바나듐5가 이온에 의해 열화 현상이 발생하고 전지 수명이 급감하는 문제가 있었다.
따라서 활물질인 바나듐 이온의 크기보다는 작으면서 전하 운반체인 수소 이온보다는 큰 기공 크기를 갖는 분리막 개발의 필요성이 커지고 있다.
공동 연구팀은 산화그래핀 간의 가교 반응을 통해 바나듐레독스-흐름전지에 적합한 기공 크기를 갖는 산화그래핀 골격체 분리막을 구현하는 데 성공했다. 가교에 의해 수화 팽창(moisture expansion, 습기나 물을 흡수해 팽창하는 현상)이 제한된 산화그래핀 간 층간 간격을 선택적 이온의 투과를 위한 기공으로 활용하는 원리이다.
이 산화그래핀 골격체는 기공 크기를 통한 분리 성능이 뛰어나 매우 높은 수소 이온-바나듐 이온 선택성을 갖는다.
연구팀의 분리막은 바나듐레독스-흐름전지의 용량 유지율을 기존 과불소계 분리막의 15배, 충․방전 사이클 수명 또한 기존 탄화수소계 분리막에 비해 5배 이상 향상시켰다.
연구팀의 산화그래핀 골격체를 통한 기공 크기 조절 기술은 다양한 크기의 이온을 활용하는 이차전지, 센서 등의 전기화학적 시스템에 적용 가능할 것으로 보인다.
김희탁 교수는 “레독스 흐름전지 분야의 고질적인 문제인 활물질의 분리막을 통한 크로스오버 및 이에 따른 분리막 열화문제를 나노기술을 통해 해결할 수 있음을 보여줬다”며 “바나듐레독스-흐름전지 뿐만 아니라 다양한 대용량 에너지 저장장치용 이차전지에 적용될 수 있을 것이다”고 말했다.
이번 연구는 한국화학연구원 주요사업, 에너지기술평가원과 기후변화연구허브사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 산화그래핀 골격체를 통한 수화 바나듐 이온과 수소 이온의 선택적 이온 투과에 대한 모식도
그림2. 바나듐레독스-흐름전지의 사이클 용량 특성
2018.06.07
조회수 14957
-
인류세 연구센터 유치기관 선정
우리 대학이 과학기술정책대학원을 중심으로 다양한 학과, 연구소 교수들이 공동으로 참여하는 ‘인류세 연구센터’ 유치기관으로 선정됐다.
인류세 연구센터는 한국연구재단이 시행하는 융합연구 선도연구센터(Convergence Research Center) 지원 사업에 선정돼 7년에 걸쳐 사업을 진행할 예정이다.
과학기술정책대학원을 비롯해 문화기술대학원, 인문사회과학부, 산업디자인학과, 전기및전자공학부, 재난학연구소, 인공위성연구센터 소속의 교수와 연구원으로 구성되고 7년 간 약 100억 원의 지원을 받으며 인류세 시대의 변화를 예측하고 대응 및 공론화하는 융합연구를 시행한다.
인류세란 인간의 과학적, 산업적, 경제적 활동이 지구에 지울 수 없는 흔적을 남기고 있는 현상을 반영하기 위해 제안된 새 지질시대를 뜻한다. 플라스틱, 이산화탄소, 방사능 물질, 콘크리트 등 인간이 만들어낸 물질로 인해 지구가 손상된 산업혁명 이후의 시기를 말한다.
기후변화와 자연재난, 환경 파괴와 대규모 멸종, 산업 고도화와 불평등 심화 등이 인류세의 대표적 징후이다. 국제 지질학계에서 처음 제시된 개념이지만 공학, 인문사회과학, 예술, 정책학 등 다양한 분야에서 활발한 논의가 이뤄지고 있다.
인류세 연구센터는 인류세 시대의 지구적 변화를 감지하고 대응하기 위한 다학제적 융합 연구를 수행한다. 인류세 연구 전문가를 키워내기 위한 대학원 협동 과정도 신설할 예정이다.
구체적으로 ▲인공위성을 활용한 한반도의 지표, 해양 및 대기 변화 기록 연구 ▲인공지능(AI)을 활용한 모델링으로 재난 예측 및 위험 거버넌스 체계 구축 ▲손상된 지구에서 살아남기 위한 지속가능 주거, 교통 및 생활양식 전환에 관한 연구 ▲인간과 지구의 새 미래를 상상하기 위한 공학적, 예술적 연구 등을 수행한다.
인류세 담론의 공론화와 연구 성과 확산을 위한 다양한 소통 활동도 전개한다. 한국지질자원연구원과의 공동연구를 수행하고 센터 수립 3년차와 7년차에는 서울시립과학관과 연계해 인류세 특별전시를 개최해 연구 성과를 시민과 공유한다.
정기 간행물 발간으로 정책 입안자의 이해를 돕고 해외 연구자와의 네트워크를 구축하고 현장에 적용 가능한 융합교육 프로그램을 개발해 교육 시장 활성화에도 기여할 예정이다.
연구책임자인 과학기술정책대학원 박범순 교수는 “인류세 연구센터가 인간과 지구를 키워드로 삼아 과학, 공학, 인문학, 사회과학, 예술의 패러다임 변화를 촉발할 것이다”며 “더 나은 인류의 삶과 더 나은 지구를 함께 추구하기 위해 필요한 새로운 기술과 사회정책을 만들어나가는데 기여하겠다”고 말했다.
2018.06.04
조회수 11653
-
박용근 교수 연구팀, 후미오 오카노 상 수상
〈 박 용 근 교수 〉
우리대학 물리학과 박용근 교수 연구팀이 3차원 디스플레이 분야 기술개발에 기여한 공로를 인정받아 미국 플로리다 주 올랜도에서 열린 국제광자공학회(SPIE) 연차총회에서‘2018년도 후미오 오카노(Fumio Okano) 상’을 수상했다.
고해상도 디스플레이와 3차원 디스플레이 분야의 선구자였던 일본의 故 후미오 오카노 박사를 기리기 위해 제정된 ‘후미오 오카노(Fumio Okano)상’은 디스플레이 분야 발전에 공헌한 연구자에게 수여된다.
일본 NHK의 후원으로 이 분야 세계 최대 규모의 국제적인 학술단체인 국제광자공학회(SPIE) 3D 영상학회가 매년 3차원 디스플레이 관련분야 우수 논문을 선정해 수여한다.
박용근 교수 연구팀은 무작위적인 광 산란을 이용해 3차원 영상을 측정하고 재현하는 새로운 기술을 개발 중이다. 박 교수 팀은 지난 2016년 국제학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’에 3차원 홀로그래픽 카메라기술, ‘네이처 포토닉스(Nature Photonics)’에 3차원 홀로그래픽 디스플레이 성능의 3천 배 향상 기술 관련 연구 성과를 각각 발표해 뉴스위크(NewsWeek)와 포브스(Forbes) 등 다수의 해외 유명 언론으로부터 주목을 받았다.
박 교수는 또 이 같은 기초연구 성과를 바탕으로 벤처기업인 ‘토모큐브(Tomocube)’를 설립해 살아있는 세포를 3차원 입체영상으로 관찰이 가능한 레이저 홀로그래피 현미경을 출시하는데 성공, 현재 미국·일본을 비롯한 여러 국가에 수출 중이다.
박 교수는 이밖에 스타트업 ‘더웨이브톡(THE WAVE TALK)’의 공동창업자로서 신 성장 동력기반을 확보하는 등 맹활약을 펼쳐 올 4월 제51회 과학의 날에는 과학기술포장을, 5월에는 (재)유민문화재단(이사장 이홍구)로부터‘홍진기 창조인상’을 각각 수상했다.
박용근 교수는“3차원 홀로그래피 분야는 성장 가능성이 매우 크고, 실생활에 밀접한 영향을 줄 수 있다”며 “하지만 현재 기술이 공상과학 영화에서 제시하는 수준에는 미치고 못하고 있는데 수 년 내에 상용화가 가능한 수준으로 발전할 것으로 기대하고 있다”며 수상소감을 밝혔다.
2018.05.31
조회수 11975
-
서민호 박사, 윤준보 교수, 완벽 정렬된 나노와이어 옮기는 기술 개발
〈 서 민 호 박사, 윤 준 보 교수 〉
우리 대학 전기및전자공학부 서민호 박사, 윤준보 교수 연구팀이 완벽하게 정렬된 나노와이어 다발을 대면적의 유연 기판에 옮기는 데 성공했다.
이 나노와이어 전사(transfer) 기술은 기존 화학 반응 기반의 나노와이어 제작 기술이 갖고 있던 낮은 응용성과 생산성을 높였다는 의의를 갖는다.
서민호 박사가 1저자로 참여한 이번 연구는 나노 과학 및 공학 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 5월 24일자에 게재됐다. (논문명 : Material-Independent Nano-Transfer onto a Flexible Substrate Using Mechanical-Interlocking Structure, 기계식 연동 구조를 활용하는 재료 선택폭 넓은 나노와이어 전사 방법)
대표적 나노 물질인 나노와이어는 작고 가볍다는 구조적 장점과 우수한 물리적, 화학적 특성 덕분에 소형 및 유연 전자 소자에 사용될 수 있다.
기존 나노와이어 전자 소자 제작은 화학적 합성법으로 제조된 나노와이어를 용액에 섞어 유연 기판에 무작위로 뿌리는 방식을 활용했다. 이로 인해 같은 방법을 사용해도 제작된 전자 소자들의 특성이 매우 다르다는 불균일성 문제가 있었다.
이러한 문제 때문에 화학적 표면 처리를 이용한 나노와이어 전사 공정이 개발돼 유연 기판 위 정렬된 나노와이어를 균일하게 제작하는 방법이 개발되기도 했다. 그러나 이 기술은 화학적인 접촉력의 조절이 가능한 일부 나노와이어만 제작 가능하기 때문에 사용 범위가 극히 제한적이다.
연구팀은 문제 해결을 위해 기계식 접촉력 조절 원리를 활용하는 새로운 나노와이어 전사 기술을 개발했다.
이 기술은 전사의 모체(master mold)가 되는 나노그레이팅 기판(nanograting substrate)에 나노희생 층(nanosacrificial layer)과 나노와이어를 순차적으로 형성한 후, 나노희생 층을 건식 식각 공정을 통해 구조적으로 약하게 만든다.
나노희생 층은 나노와이어와 모체를 매우 약하게 연결하고 있기 때문에 이후 유연 기판이 되는 재료를 이용하면 마치 테이프를 이용해 바닥의 먼지를 떼어내듯 나노와이어를 쉽게 모체에서 유연 기판으로 옮길 수 있다.이 기술은 일반적인 물리적 증착법을 기반으로 제작되고 재료 의존성이 낮기 때문에 손쉽게 나노와이어를 유연 기판에 제작할 수 있다.
연구팀은 개발한 기술을 이용해 금, 백금, 구리 등 다양한 금속 나노와이어와 결정화된 금속 산화물을 유연 기판 위에 완벽하게 정렬해 제작했다.
또한 이를 유연 히터와 가스 센서 소자에 응용함으로써 실제 생활에 사용될 수 있는 안정적인 응용 소자를 구현할 수 있음을 증명했다.
서민호 박사는 “우수한 물성의 다양한 금속, 반도체 나노와이어를 웨이퍼 수준으로 완벽 정렬해 유연 기판에 옮기고 이를 소자 제작에 응용했다”며 “다양한 나노와이어 재료의 유연 기판 위 제작을 위한 플랫폼 기술로 고성능 유연 전자 소자의 안정적 개발에 기여할 것이다”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업, 나노종합기술원 오픈 이노베이션 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 연구팀의 기술로 제작된 금 단면
2018.05.29
조회수 12094
-
김희탁 교수, 도넛모양 황화리튬 이용 리튬황이온전지 개발
〈 팽민 예 연구교수, 김희탁 교수 〉
우리대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 기존 리튬이온전지보다 높은 에너지 밀도를 가지면서 저렴하고 600사이클 이상의 수명을 갖는 도넛 모양 활물질 구조의 리튬황이온전지를 개발하는데 성공했다.
전기자동차의 배터리로 사용되는 리튬이온전지는 낮은 에너지 밀도 때문에 1회 충전시 가능 주행 거리가 짧아 높은 에너지 밀도를 구현할 수 있는 리튬황전지의 개발이 10여 년 간 경쟁적으로 이뤄져 왔지만 리튬황전지는 음극인 리튬금속전극의 취약한 가역성으로 인해 전지의 사이클 수명을 확보하는데 어려움이 많았다.
이러한 문제 해결을 위해 연구팀은 리튬금속음극 대신 리튬이온전지에 사용되는 사이클 수명이 우수한 흑연음극 이용과 함께 용량이 높은 황화리튬(Li2S) 양극을 결합해 에너지 밀도와 수명 향상에 힘썼다. 그러나 황화리튬이 고가이고, 흑연음극과 황화리튬 양극의 사이클 수명을 동시에 만족하는 전극 및 전해액 설계기술이 없어 기술적인 한계가 있었다.
이에 연구팀은 저가의 황산리튬(Li2SO4)을 원재료로 도넛 모양의 황화리튬 양극 활물질을 제조했다. 그러면서 고농도 염 전해액을 이용해 흑연음극과 황화리튬 양극을 이용한 리튬황이온 전지를 구현했다. 내부가 비어있는 도넛 모양의 황화리튬은 리튬이온의 전달력을 향상시켜 높은 충, 방전 가역성을 보였고, 고농도 염 전해액은 흑연전극 표면에 안정적인 막을 형성해 우수한 내구성을 보였다.
연구팀은 이 기술을 통해 기존 리튬이온전지보다 30% 높은 에너지 밀도를 구현함과 동시에 600사이클 이상의 수명을 확보하는 데 성공했다. 연구팀의 도넛모양 황화리튬 전극은 저가의 원재료를 이용하면서 단일 열처리 공정으로 제조할 수 있고, 기존 리튬이온전지에 적용할 수 있어 산업적으로 활용할 수 있을 것으로 보인다.
김희탁 교수는 “저가 황 화합물을 리튬이온전지에 적용해 에너지 밀도와 수명을 동시에 향상시킬 수 있음을 증명했다”고 말했다. 이번 연구는 KAIST 나노융합연구소와 한국과학기술연구원 및 한국연구재단 기초연구지원사업의 지원으로 수행됐다.
팽민 예(Fangmin Ye) 연구교수가 1저자로 참여한 이번 연구 결과는 재료과학분야 국제학술지 ‘어드밴스드 사이언스(Advanced Science)’ 지난 7일자 온라인 판 논문에 게재됐다.
□ 그림 설명
그림1. 도넛 모양 황화리튬 활물질 구조 및 제조 원리
2018.05.24
조회수 16432
-
2018 리서치데이 개최
우리 대학이 ‘2018 KAIST 리서치데이’ 행사를 25일 본원 학술문화관 5층 정근모콘퍼런스홀에서 개최한다.
이 행사는 우리 대학이 최근의 주요 연구 성과를 소개하고 4차 산업혁명 관련 R&D 분야의 정보와 지식, 노하우 등을 공유해 융합 연구의 활성화에 기여하기 위해 마련됐다.
올해로 3회째를 맞는 리서치데이 행사는 연구 부문 우수교원 포상, 대표 연구 성과 10선 선정, 우수 연구자 강연, 축하공연 등의 순서로 진행된다.
2018 리서치데이 연구대상은 전기및전자공학부 김종환 교수, 연구상은 항공우주공학과 방효충 교수와 전기및전자공학부 권인소 교수가 선정됐다.
리서치데이 연구대상은 직전 5년간의 연구계약과 지식재산권 및 로열티 수입 실적 등의 성과를 종합해 선정된다. 연구상은 직전 1년간의 연구 성과를 종합한다.
이노베이션상은 전산학부의 한동수 교수, 융합연구상은 전기및전자공학부 김준모 교수와 건설및환경공학과 명현 교수가 한 팀으로 각각 수상한다.
대표 연구 성과 10선으로는 △초고속 동작 자기메모리 핵심 기술(물리학과 김갑진 교수) △이중 안정점을 가진 포텐셜계(수리과학과 변재형 교수) △염기성 금속을 이용한 선형과 고리형 알카인 분자의 선택적인 탈수소화 촉매 반응(화학과 백무현 교수) △패혈증 원인물질인 박테리아 내독소가 생체 내에서 인식되고 면역활성화를 유도하는 메커니즘 구성(의과학대학원 김호민 교수) △멤리스터 기반의 섬유형 웨어러블 전자소자 및 회로 기술 개발(전기및전자공학부 최양규 교수, 최성율 교수 공동수상) △점진적 가변형 모델에 기반한 해마 형태학 연구(전산학부 박진아 교수) △구조물 안전성 향상을 위한 가속도계 및 GPS-RTK 융합을 통한 구조물 6자유도 동적거동 정밀계측 시스템 개발(건설및환경공학과 손 훈 교수) △종양 내 인공수용체 전달을 통한 종양 표적치료기술(바이오및뇌공학과 박지호 교수) △휴미코타: 세라믹 3D 프린팅을 통한 가습기 디자인 개발(산업디자인학과 배상민 교수) △고안정성 초박막 이온성 고분자 박막 제작 기술(생명화학공학과 임성갑 교수) 등 자연과학분야 3건, 생명과학분야 1건, 공학분야 6건이 선정됐다.
우리 대학은 이날 행사에서 10선에 뽑힌 연구 성과물에 대해 시상하고 동영상을 통해 참석자들에게 소개하는 시연회를 가질 예정이다.
시상식 후 연구대상 등 우수한 연구 성과를 이룬 연구자들의 강연을 통해 연구 성과를 공유하고 교류하는 시간도 준비돼 우리 대학 구성원은 물론 일반시민들도 행사에 참여할 수 있다.
2018.05.23
조회수 13467
-
이해신 교수, 와인성분 통해 심장에 정맥주사로 약물 전달 기술 개발
〈 이 해 신 교수 〉
우리 대학 화학과 이해신 교수 연구팀이 와인의 떫은맛을 내는 성분인 탄닌산(tannic acid)을 이용해 간단한 정맥주사만으로도 약물을 심장 조직에 전달할 수 있는 기술을 개발했다.
연구팀은 탄닌산을 단백질, 펩타이드 등의 약물과 혼합시켜 입자화 하는 방법을 통해 심장조직을 표적할 수 있음을 규명했다. 연구팀의 심장 질환의 효율적 치료를 위한 표적화 약물전달 기술은 단백질 기반의 다양한 신약에 적용 가능할 것으로 기대된다.
안전성평가연구소의 예측모델 연구센터 김기석 박사 연구팀과 공동으로 수행된 이번 연구는 네이처 자매지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 4월 30일자 온라인 판에 게재됐다.
심장은 인체 내 가장 중요한 기관으로 분당 60~100회의 박동을 하는 동안 약 5리터의 혈액을 뇌를 포함한 전신에 공급하는 역할을 한다. 심장은 심근이라는 근육을 이용해 끊임없이 박동하는 운동성이 높은 기관이다.
심장 및 관련 혈관 질병을 심혈관계-순환계 질환이라고 하는데 이는 우리나라 사망 원인 2위를 차지한다. 고혈압, 당뇨, 고지혈증, 흡연, 비만 등 현대인의 불규칙한 식습관 및 생활습관으로 인해 나타날 수 있다. 대표적으로 심장으로 가는 관상동맥이나 미세한 혈류들이 좁아져 산소 및 영양분 공급이 원활하지 못해 발생하는 심근경색이 있다.
많은 연구자들이 심혈관계 질환 극복을 위한 화학약물요법이나 치료용 단백질 등을 개발하고 있다. 그러나 여전히 직접적인 수술, 카테터 및 스텐트 삽입 등에 의존하고 있으며 일반 정맥주사로 개발된 약물을 심장에 효율적으로 전달하는 기술은 개발되지 않았다.
심장의 강한 운동성으로 인해 정맥으로 주사된 약물이 순환하는 동안 심장으로의 전달 효율이 급격하게 저하되기 때문이다.
문제 해결을 위해 연구팀은 과일 껍질, 견과류, 카카오, 와인 등에 다량으로 존재하는 탄닌산이라는 물질을 이용했다. 탄닌산은 와인의 떫은맛을 내는 폴리페놀 분자의 일종으로 혀에 존재하는 점막 단백질과 결합해 떫은맛을 낸다고 알려져 있다.
연구팀은 탄닌산과 단백질 사이의 강한 분자 간 결합력을 이용해 치료용 단백질, 유전자 전달체인 바이러스 또는 기능성 펩타이드 약물 등을 간단하게 섞어주는 방법으로 입자화에 성공했다. 그리고 이를 주사했을 때 심장을 표적화할 수 있다는 사실을 발견했다.
탄닌산을 이용한 단백질 입자화 기술의 원리는 일종의 ‘분자 수준에서의 코팅’ 기술이다. 입자화된 단백질 복합체 표면에 코팅된 탄닌산이 심장의 기능을 유지하기 위해 밀집돼 있는 엘라스틴 및 콜라겐 단백질과 부가적으로 강한 상호작용을 하며 심장 조직에 부착된 상태로 오랜 시간 머무는 심장 표적화 기술이다.
이러한 탄닌산-단백질 복합체는 단백질만을 주사했을 때와 비교하면 5일 이상 장기적으로 혈관 내에서 순환됨을 확인했다.
이 교수 연구팀은 예전부터 탄닌산을 비롯한 접착성, 코팅성을 갖는 다양한 폴리페놀 재료를 응용해 의료용 생체 재료를 개발해 왔다. 실제로 심근경색 동물 모델에 탄닌산과 섬유아세포 증식인자를 섞어서 만든 약품을 주입하고 4주가 지난 뒤 심근경색이 일어난 크기가 감소했을 뿐 아니라 좌심실 압력 및 심박출량 등이 정상에 가깝게 호전되는 것을 확인했다.
이해신 교수는 “지금까지 심장질환 관련한 많은 약물들이 개발됐음에도 불구하고 상대적으로 약물을 심장에 효율적으로 전달하는 방법은 개발되지 않았다”며 “이번 기술은 기존 약물들을 새롭게 공식화해 개량신약으로 만들 수 있는 원천기술이다”고 말했다.
이번 연구는 연구재단 중견연구자 도약연구, 보건복지부 암정복프로그램, 산업통상자원부의 바이오산업핵심기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 탄닌산으로 제조한 단백질 복합체가 심장 조직에 전달되는 모식도
그림2. 바이러스 유전자 발현 효율 및 치료기능성을 보여주는 연구결과
2018.05.16
조회수 19307