-
신소재공학과 정우철 교수, 한국세라믹학회 젊은 세라미스트상 수상자로 선정
우리 대학 신소재공학과 정우철 교수가 대전컨벤션센터에서 2020년 11월 23일 한국세라믹학회 2020년 추계학술대회에서 수여하는 젊은 세라미스트상 수상자로 선정됐다.
젊은 세라미스트상은 한국세라믹학회에서 수여하는 최고 영예의 상으로, 지난 5년간 세라믹 연구 분야에 탁월한 업적을 가진 전도가 유망한 젊은 연구자에게 수여된다. 정우철 교수는 산화물 반도체를 활용한 촉매 분야 연구에 매진하여, 연료전지, 수소 개질기 및 가스 센서에 필요한 촉매 및 박막 소재를 개발하는 등 세라믹 분야 학술 발전에 기여한 공로를 인정받아 이 상을 수상하게 된다.
이번 세라믹학회에서는 정우철 교수 외에도 신소재공학과 소속 학생 8명이 참여해 양송포스터상 최우수 논문(김현승, 김상우, 김승현 박사과정), 양송포스터상 우수 논문(김용범 석사과정) 등 4건의 상을 수상했다.
2020.11.30
조회수 35957
-
교내 군 위탁교육장교, 국방대 국방학술대회 금상 수상 쾌거
우리 대학 문술미래전략대학원 박사과정 육군소령 장영균(지도교수 : 양재석)과 신소재공학과 석사과정 육군대위 박규순(지도교수 : 스티브박)이 국방대학교 대학원생 국방학술대회에서 금상을 수상하는 쾌거를 달성했다.
매년 국방대학교에서 열리는 국방학술대회는 안보정책, 군사전략, 국방관리, 국방과학 4개 분과에서 국방분야 우수 연구를 수상하는 대회다. 대회에서는 국방대학교, KAIST, 서울대 등 전국 각지에서 국방관련 연구를 하는 군 위탁장교와 민간학생들이 참가했다. 그 중에서 우리학교 학생은 안보정책 분과와 국방과학 분과에 참가하여 각 분과에서 1등을 해 금상(각 군 참모총장상)을 수상했다. 이를 통해 KAIST 학생들이 국가, 국방 R&D 분야에서 뛰어난 역량을 갖췄다는 사실을 알 수 있다.
현재 국군간호사관학교 교양학처 군사학교수로 재직중인 문술미래전략대학원 장영균 소령은 “Network Analysis of the US-China Hegemonic Transition”(미국과 중국의 패권전이에 대한 네트워크 분석) 이라는 연구논문을 발표했다. 이 연구는 현재 국제관계의 핵심 이슈인 미국과 중국의 패권경쟁을 네트워크 분석을 적용해 분석 및 평가한 연구로서, 심사위원들로부터 데이터에 기반한 과학적 접근을 통해 미국과 중국의 패권전이 현상을 객관적으로 분석했다는 평을 받았다. 장영균 소령은 "질적연구가 주를 이루고 있는 국제관계 분야에서 복잡계 네트워크라는 과학적 기법을 적용해 국제사회의 구조변화를 객관적으로 분석하고, 이를 기초로 국가의 미래 안보전략 수립에 기여하고 싶다"고 말했다. 장영균 소령의 수상을 통해 우리 대학이 이·공계 분야뿐만 아니라 사회과학 분야, 특히 국방 사회과학 분야에도 높은 수준을 갖추고 있음을 알 수 있다.
신소재공학과 박규순 대위는 “Development of 3D printable inks to fabricate fabric-based tactile sensors for warrior platform and robot combat system(미래 보병체계 및 로봇 전투체계 적용을 위한 직물 기반 촉각센서 제작용 3D 프린팅 용액 개발)”의 연구주제로 발표했다. 이는 현재 군이 추진하고 있는 워리어 플랫폼(Warrior Platform, 미래 보병체계)과 소프트 로봇 전투체계에 적용하기 위한 촉각센서를 개발한 것이다. 워리어 플랫폼에 촉각센서를 적용해 전투원의 모든 신체활동을 인지, 국방 데이터센터와 연계해 실제 전투나 훈련 속에서 전투원이 필요로 하는 움직임을 데이터화 할 수 있다. 이를 통해 교육훈련의 변혁을 이끌어 낼 수 있는 점에서 좋은 평가를 받았다. 또한, 전장상황 속에서는 로봇체계의 파괴나 변형이 빈번하게 이루어진다. 이러한 상황 속에서 구성품의 각도와 길이를 기반으로 역계산하는 기존의 로봇 제어시스템은 필연적으로 오차가 발생하는데, 촉각센서를 통해 파괴와 변형이 이루어진 이후의 결과를 통해 정확한 자세제어가 가능하다.
발표 당시 심사위원은 촉각센서가 우리 군에 꼭 필요한 분야라며 좋은 연구를 해주어 고맙다는 의견을 말하기도 했다.
특히, 박규순 대위는 우리 대학 석사과정 1학년 재학 중으로 위 성과는 여러 박사과정, 석사졸업예정자 학생들과 경쟁해 얻은 성과다. 또, 촉각센서가 군에 필요한 분야임을 알리기 위해 한국군사과학기술학회 발표와 육군 군수지에 기고를 하기도 했다. 군사과학기술을 대중들에게 쉽게 인지될 수 있도록 “Military Talk_재미있는 군사이야기”의 제목으로 일반도서를 출판하는 등 국방 R&D에 열정을 다하고 있다.
장영균 소령과 박규순 대위는 "함께 열정적으로 연구한 연구팀들과 연구에 전념할 수 있는 환경을 만들어준 학교와 지도교수님께 감사드린다"라며 “4차 산업혁명 시대를 맞아 대한민국의 안보를 위해 앞으로 더욱 성실히 연구에 임할 것이다.”라고 수상 소감을 밝혔다.
2020.11.16
조회수 34619
-
인공지능을 이용해 숨겨진 소재를 탐색하는 기술 개발
우리 대학 생명화학공학과 정유성 교수 연구팀이 인공지능(AI) 기술을 이용해 숨겨진 소재 공간을 탐색, 숨겨진 새로운 물질을 예측하는 기술을 개발하는 데 성공했다고 27일 밝혔다.
소재 연구의 궁극적인 목표는 원하는 *물성을 갖는 소재를 발견하는 것이다. 그러나 무기화합물의 가능한 모든 조성과 결정구조를 고려할 때 무한대에 가까운 경우의 수를 샅샅이 탐색하기는 쉽지 않다. 이러한 문제 해결을 위한 방안으로 컴퓨터 스크리닝 소재 탐색 방법이 널리 사용되고 있지만 찾고자 하는 소재가 스크리닝 후보군에 존재하지 않을 때는 유망한 물질 후보들을 놓치는 경우가 종종 발생한다.
☞ 물성(physical properties): 물질의 전기적, 자기적, 광학적, 역학적 성질 따위를 통틀어 이르는 말
정유성 교수 연구팀이 개발한 *소재 역설계 방법은 데이터 학습을 통해 주어진 조성을 갖는 결정구조를 새롭게 생성하게 함으로써 기존 데이터베이스에는 존재하지 않던 신물질을 발견할 수 있도록 한다. 특히, 기존의 역설계 방법에서는 원하는 조성을 제어할 수 없지만, 정 교수팀이 개발한 역설계 방법은 원하는 조성을 제어함으로써 숨어있는 화학 공간을 효율적으로 탐색해 물질을 설계할 수 있다.
☞ 소재 역설계(Materials Inverse Design): 주어진 구조에 대한 물성을 측정하는 방식의 반대 개념으로, 특정한 물성을 갖도록 소재의 구조를 역으로 찾아가는 방법
이번 정 교수팀의 연구성과인 결정구조 예측기술은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)을 기반으로 개발됐다. 또 기존의 복잡한 3차원 이미지 기반 물질 표현자의 단점을 해소하기 위해 비교적 간단한 원자들의 3차원 좌표를 기반으로 한 물질 표현자를 사용했다.
정 교수팀은 이번 연구를 통해 개발한 소재 역설계 방법을 활용, 빛을 이용한 수소생산 촉매로 활용될 수 있는 마그네슘-망간-산화물 기반의 광촉매 물질의 결정구조를 예측하는 데도 성공했다. 기존 데이터베이스에 존재하지 않는 조성들을 생성조건으로 다양한 마그네슘-망간-산화물 구조를 생성한 결과, 기존에 알려지지 않았으면서 광촉매로서 전도유망한 특성을 갖는 신물질을 다수 발견했다.
정유성 교수는 "광촉매 물질의 설계에 적용한 이번 소재 설계 프레임워크는 화합물의 화학적 조성뿐 아니라 사용자가 원하는 특정 물성을 갖는 소재를 역설계하는데 적용이 가능하다ˮ면서 "여러 소재 응용 분야에서 활용될 수 있을 것으로 기대된다ˮ고 말했다.
우리 대학 생명화학공학과 김성원 박사과정과 노주환 박사과정이 공동 제1 저자로, 토론토 대학의 아스푸루-구지크(Aspuru-Guzik) 교수가 공동연구로 참여한 이 연구성과는 미국화학회(ACS)가 발행하는 국제학술지 ACS 센트럴 사이언스(ACS Central Science) 지난 8월호에 실렸다.(논문명: Generative Adversarial Networks for Crystal Structure Prediction)
한편, 이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구) 지원을 받아 수행됐다.
2020.10.28
조회수 30058
-
제1회 KAIST 이머징 소재 심포지엄 개최
우리 대학이 9월 21일(월)부터 25일(금)까지 5일간 `제1회 KAIST 이머징 소재 심포지엄(1st KAIST Emerging Materials e-Symposium)'을 개최한다.
'유망 소재 분야의 빅 아이디어들'을 주제로 열리는 이번 심포지엄에는 2010년 노벨 물리학상 수상자인 안드레 가임(Andre Geim) 교수를 포함해 재료공학·화학·화학공학 분야의 세계적인 석학 21명이 강연자로 참여하며, 온라인 화상회의 프로그램인 줌(Zoom)과 유튜브(Youtube)를 통해 발표와 토론을 진행한다.
이번 심포지엄은 재료공학·화학·화학공학 분야의 혁신적인 기술과 최신 성과를 공유하기 위해 기획되었다. 차세대 애플리케이션용 나노구조, 환경 및 산업 분야에 응용할 수 있는 화학 및 생명공학, 기술 적용을 위한 재료 혁신 등 크게 3개의 주제를 아우르는 아이디어와 주요 이슈를 학생과 엔지니어를 포함한 연구자들에게 제공할 예정이다.
이를 위해, 미국화학회가 발행하는 나노분야 대표적 학술지인 나노학술지(ACS Nano) 편집장 폴 웨이즈(Paul S. Weiss) UCLA 교수, 나노에너지(Nano Energy) 편집장 종린 왕(Zhong Lin Wang) 조지아공대 교수, 에너지 스토리지 머티리얼스(Energy Storage Materials) 편집장 후이밍 쳉(Hui-Ming Cheng) 중국 칭화대 교수, 재료 연구 학회지(Account of Materials Research) 편집장 지아싱 황(Jiaxing Huang) 노스웨스턴대 교수 등 4명의 편집장이 신흥 유망 소재 분야의 연구 현황을 발표하고 패널 토론을 통해 국제학술지의 나아갈 방향을 논의한다.
특히, 심포지엄 3일 차인 23일 오후에는 2010년 노벨 물리학상 수상자인 안드레 가임 영국 맨체스터대 교수의 강연이 마련되어 있다. 스카치테이프를 흑연에 붙였다 떼는 방법으로 2차원 그래핀(graphene) 박리에 세계 최초로 성공한 가임 교수는 `첨단 에너지 재료·기능성 나노 재료' 세션의 발표를 맡았다.
높은 전기전도도·열전도도·강도·유연성 등의 물리화학적 특성으로 인해 그동안 꿈의 소재로 불려왔던 그래핀이 트랜지스터·투명 전극·촉매 등의 다양한 분야에 적용되어 점진적으로 실용화 되는 사례 등을 소개할 예정이다.
이 밖에도, 미국화학회지(Journal of American Chemical Society)를 포함해 국제인 권위를 자랑하는 학술지를 담당하는 8인의 부편집장 및 폴 알리비사토스(Paul Alivisatos) UC 버클리 교수, 제난 바오(Zhenan Bao) 스탠퍼드대 교수 등 나노입자 분야와 웨어러블 전자소자 분야의 세계적인 석학 8인도 함께 참여한다.
이번 국제 심포지엄은 ▴나노물질을 이용한 소프트 전자기기 응용, ▴신소재를 이용한 나노구조 제어, ▴신소재 선도 분야 및 최신 나노연구, ▴차세대 에너지 소재 및 기능성 물질, ▴나노 연구의 도전과 기회에 관한 편집장 미팅 등 5일간 7개의 세션에서 열띤 강연이 진행된다.
이와 관련하여 ▴2차원 그래핀 기반 나노 소재, ▴원자 크기의 재료 설계 기술, ▴나노과학 및 나노기술의 미래, ▴화학 반응 및 촉매를 이용한 나노-전자 센서, ▴화학 물질 및 나노 소재용 물질 대사 시스템, ▴생체 피부 모방 고분자 전자 재료 및 디바이스, ▴에너지 소재의 연구 동향 및 미래 등이 핵심 발표 주제로 다뤄진다.
행사의 총괄을 맡은 김일두 석좌교수(KAIST 신소재공학과, ACS Nano 부편집장)는 "코로나19로 전 세계가 어려움을 겪는 상황이지만, 온라인이라는 수단을 통해 국·내외 저명한 석학들과 정보 교류를 강화하고 공동 연구를 실시해 세계 최고의 소재 기술을 개발하는 기회로 활용하고자 이번 심포지엄을 준비했다ˮ고 개최 배경을 밝혔다.
이어, 김 교수는 "재료 및 화학, 생명공학 분야 저명한 석학들이 한자리에 모이는 국제학술 교류의 장을 마련한 만큼 그래핀·맥신 나노 신소재·차세대 에너지 저장 및 발전기술·웨어러블 전자소자 및 바이오 소재 등 최신 미래 기술을 배울 수 있는 소중한 기회가 될 것ˮ이라고 강조했다.
이번 행사는 유튜브 중계를 통해 전 세계에서 최소 10만 명 이상이 참여할 것으로 기대되고 있으며, 심포지엄과 관련한 자세한 정보는 홈페이지(ems.kaist.ac.kr)에서 확인할 수 있다.
신소재·화학·바이오 및 생명 화공 분야 미래 선도 기술들에 대한 최신 연구에 관심이 있는 사람이라면 유튜브 채널( https://www.youtube.com/c/kmaterials )에 접속해 누구나 무료로 시청할 수 있다.
한편, KAIST 신소재공학과는 `2020 QS 세계대학평가 학과별 순위'에서 전 세계 대학 중 19위를 차지한 바 있다.
2020.09.18
조회수 33208
-
2020 온라인 기술이전 설명회 개최
우리대학이 9월 17일 '2020 KAIST 온라인 기술이전 설명회'를 개최한다. 올해로 4회째를 맞는 설명회는 코로나19 확산 예방을 위해 지난 3년간의 행사와는 다르게 온라인을 통해서만 진행될 예정이다. KAIST와 성남산업진흥원(원장 류해필)이 *K-GLOBAL 사업의 일환으로 공동 개최하는 이번 설명회는 KAIST 연구진이 보유한 우수 기술을 기업에 이전해 산업 경쟁력을 높이고 이를 기술 가치 창출로 연결하는 선순환 모델을 구축하기 위해 마련됐다.(K-GLOBAL사업: KAIST와 성남시가 협력해 성남시 중소/벤처기업 및 스타트업의 글로벌 시장 진출 지원과 4차 산업혁명 선도도시 구현을 위해 추진 중인 사업)
KAIST 기술가치창출원(원장 최경철)은 코로나19 팬데믹으로 사회 전반이 변화하고 있는 상황에서 불확실한 미래에 대응하기 위해 핵심 바이오 분야 및 소재·부품·장비 분야에서 총 10종의 미래 유망 신기술을 선정해 소개한다. 4개의 바이오 기술을 선보이는 1부에서는 고령화로 인한 만성질환 증가에 대비하고 삶의 질을 향상하기 위한 기술들이 소개된다. ① 초저온 전자현미경 이용 단백질 구조 기반 신약개발 기술(생명과학과 송지준 교수), ② 호메오 단백질 특성 기반 망막재생 촉진 기술(생명과학과 김진우 교수), ③ 고화질 초소형 3차원 내시경 카메라 기술(바이오및뇌공학과 정기훈 교수), ④ TSP1 단백질 억제제 함유 파브리병의 예방 및 치료제(생명과학과 한용만 교수) 등이다.
특히, 김진우 교수의 호메오 단백질 특성 기반 망막재생 촉진 기술은 녹내장·나이 관련 황반변성·망막색소변성증 등 전 세계 2% 이상의 인구가 앓고 있는 망막 퇴행성 질환의 망막 재생 촉진 기술로 주목받고 있다. 망막 신경 재생을 담당하는 뮬러글리아세포의 분열을 촉진하는 기술로 신경 세포 분화 기술을 접목할 경우 다양한 망막 신경 퇴행성 질환을 치료하기 위한 신개념 단백질 및 항체 치료제 개발로 이어질 수 있다.
또한, 송지준 교수는 초저온 전자현미경을 이용해 거대 단백질의 3차원 구조를 고해상도로 규명하는 기술을 선보인다. 단백질 구조를 바탕으로 한 AI 신약개발 기술로 세계적 수준의 첨단 초저온 전자현미경 구조 규명 기술이며 송 교수 연구팀이 독보적으로 보유하고 있는 연구 성과다. 2부 순서에서는 소재·부품·장비 분야에서 엄선한 기술이 소개된다. ① iCVD를 이용한 유기막 공정 및 장치(생명화학공학과 임성갑 교수). ② 열전달 패턴 분석을 기반 자동 평가/모니터링 기술(건설및환경공학과 손훈 교수), ③ 물과 친수성 섬유 멤브레인을 이용한 발전기술(신소재공학과 김일두 교수), ④ 의료용 금속 3D 프린팅 기술(신소재공학과 최벽파 교수), ⑤ 나트륨 및 황화구리를 이용한 2차전지 기술(신소재공학과 육종민 교수), ⑥ 다채널을 이용한 음성인식 방법(신소재공학과 이건재 교수) 등 모두 6개다.
육종민 교수의 나트륨 및 황화구리를 이용한 2차전지 기술은 황화구리를 이용해 기존 리튬이온 전지와 비슷한 성능을 내면서도 30% 이상 저렴한 전지를 만들 수 있는 나트륨 저장 기술이다.
김일두 교수는 물을 이용한 전기에너지 생성장치 기술을 선보인다. 탄소층이 코팅된 친수성 섬유 멤브레인을 활용한 전기에너지 생성장치는 물리적인 에너지를 이용하지 않아 가장 저렴하면서도 손쉽게 전기를 얻을 수 있어 그린 뉴딜정책의 에너지 분야에 큰 힘을 실어줄 것으로 기대가 크다. KAIST 기술가치창출원 관계자는 "직접 연구·개발해 특허권을 보유한 교내 우수 기술을 지난 6월부터 발굴했으며 교수 및 변리사·벤처 투자자·사업화 전문가 등 10명으로 구성된 심사단이 평가를 진행했다ˮ라고 말했다. 그는 이어 "다양한 분야에 적용할 수 있는 응용 가능성과 시장 규모, 기술 혁신성 등을 주요 평가 지표로 삼아 우수 특허기술을 선정했다ˮ고 덧붙였다.
17일 열리는 행사에서는 설명회가 진행되는 동안 참여 기업이 댓글로 질의를 올리면 연구자들이 실시간으로 답변한다. 이밖에 사전등록을 마친 기업을 대상으로 온라인 기술이전 상담도 함께 진행된다.
최경철 기술가치창출원장은 "이번 기술이전 설명회는 참여 기업들이 KAIST의 기술을 적극적으로 이전받아 일자리 창출 및 글로벌화를 모색하는 산학협력을 강화하는 계기가 될 것ˮ이라면서 "KAIST의 기술이전을 통해 코로나19로 어려움을 겪고 있는 국내 기업이 위기 상황을 극복하고 나아가 포스트 코로나 시대를 선도할 수 있도록 힘을 보태고자 한다ˮ고 강조했다.
2020.09.10
조회수 28275
-
언제 어디서든 사람을 살리는 상시 동작형 유해가스 감지 센서 개발
밀폐된 공간에서 유해가스를 감지해 안전사고를 사전에 방지할 수 있는 초 저전력 유해가스 감지 센서가 우리 연구진에 의해 개발됐다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀은 독자 기술로 개발한 나노 소재 *'나노린'을 통해 상시 동작이 가능한 초 저전력 유해가스 감지 센서를 개발했다고 1일 밝혔다.
☞ 나노린(Nanolene): 완벽하게 정렬된 나노와이어 다발들이 공중에 떠 있는 구조를 지칭하는 용어. 나노와이어의 Nanoline과 그래핀과 같은 2차원 나노 재료의 접미사 –ene을 합성해 탄생한 단어다.
일산화탄소 등의 유해가스에 의한 안타까운 인명 사고는 과거로부터 현재까지 끊임없이 반복되고 있다. 이에 따라 유해가스를 실시간으로 감지하는 예방 기술에 대한 대중의 관심과 수요가 꾸준히 증가하는 추세인데 학계에서도 유해가스 감지 센서 개발을 위한 연구가 활발하다.
금속산화물을 기반으로 하는 가스 센서는 소형화에 유리하고, 생산 단가가 저렴해서 관련 산업에 활용이 가능한 가스 감지 기술로 주목받아 왔다. 가스 센서는 수백 도 씨(℃) 내외의 고온에서 동작하기 때문에 히터를 통한 열에너지 공급이 필수적이다.
이때 주변으로 방출되는 다량의 열과 히터의 높은 소비 전력 때문에 스마트폰과 같은 휴대용기기에 적용 가능한 실시간 가스 센서를 개발하기는 쉽지 않다. 윤준보 교수팀이 개발한 유해가스 감지 센서는 독자적인 나노 공정 기술을 통해 개발한 나노 소재 `나노린'을 활용해 초 저전력으로 언제, 어디서든 항상 사용이 가능한 게 큰 특징이다.
나노 소재는 독특한 전기적, 화학적 특성 때문에 미래 센서 기술의 핵심 구성 요소로 주목받고 있지만, 제조 방법상 크기를 제어하기가 쉽지 않고 원하는 위치에 정렬된 형태로 구현하는 것 또한 어렵다. 윤 교수 연구팀은 나노린을 통해 이런 문제점을 해결했다. 윤 교수팀이 개발한 이 기술은 기존의 나노 소재 제작 방법과는 다른, 일반적인 반도체 공정을 기반으로 제작하기 때문에 양산성이 뛰어나고(대량생산이 가능) 산업적 활용 가치 또한 매우 높다고 평가받고 있다.
연구팀은 우선 나노린을 초 저전력 나노 히터에 활용했다. 시험과정에서 나노 소재가 지닌 고유의 열 고립 효과를 통해 기존 마이크로히터의 물리적 한계를 뛰어넘는 초 저전력 고온 구동을 실현하는 데 성공했다. 이와 함께 나노 히터에 완벽하게 정렬된 형태의 금속산화물 나노와이어를 일체형으로 집적해 가스 센서로 응용했는데 스마트폰 내장에 적합한 수준의 낮은 소비 전력으로 일산화탄소 가스 검출에 성공했다.
과거 광부들은 유해가스로부터 생명을 지키기 위해 탄광에 들어갈 때마다 카나리아라는 새를 데리고 들어갔다. 카나리아는 메탄, 일산화탄소 가스에 매우 민감해 유해가스에 소량만 노출돼도 죽는다. 광부들은 카나리아의 노래가 들리면 안심하고 채굴했고 카나리아가 노래를 부르지 않을 땐 탄광에서 뛰쳐나와 스스로 생명을 지킬 수 있었다.
윤준보 교수는 "상시 동작형 가스 센서는 언제 어디서나 유해가스의 위험을 알려주는 '스마트폰 속 카나리아'로 활용이 기대된다ˮ고 연구결과를 소개했다.
제1 저자인 전기및전자공학부 최광욱 박사는 이를 휴대용기기에 내장하기 적합한 초 저전력 가스 센서 기술이라고 설명하면서 "이 기술이 가스 사고를 사전에 차단하고 인명 사고를 막는 데 활용되길 기대한다ˮ고 말했다.
KAIST UP 프로그램과 한국연구재단의 중견연구자 지원사업을 통해 수행된 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머터리얼즈 (Advanced Functional Materials)' 8월 12일 字에 온라인으로 게재되는 한편 연구 내용의 우수성을 인정받아 오프라인 저널의 후면 표지논문으로 선정됐다. (논문명: Perfectly Aligned, Air-Suspended Nanowire Array Heater and Its Application in an Always-On Gas Sensor)
2020.09.01
조회수 31497
-
이산화탄소 처리로 산화 티타늄 신소재 판형 맥신 합성 성공
우리 대학 생명화학공학과 이재우 교수 연구팀은 나노 신소재 *맥신(MXene)과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 고르게 분포된 판형 구조의 맥신을 합성하는데 성공했다고 25일 밝혔다.
☞ 맥신(MXene): 전자파를 흡수하고 차단하는 신개념 초경량 나노 신소재. 전자 부품간 전자파 간섭을 고성능으로 차단할 수 있어 전자통신 제품에 활용할 수 있다.
이 교수 연구팀은 수용액 상태에서 표면을 벗겨낸(박리된) 맥신과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 맥신 표면에 고르게 분포된 판형 맥신을 합성했다. 연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신은 단일공정으로 매우 경제적일 뿐만 아니라 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다.
생명화학공학과 이동규 박사과정생이 제1 저자로 참여한 이번 연구결과는 국제 학술지 `ACS 나노 (ACS Nano)' 7월 30일 字 온라인판에 게재됐다. (논문명 : CO2-Oxidized Ti3C2Tx-MXenes Components for Lithium-Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption).
맥신은 전기전도도가 높고 유연성이 뛰어나기 때문에 센서·에너지 저장/전환장치·전자기차 폐수처리 재료 등 다양한 분야에서 활용될 수 있는 신물질이면서 특히 그래핀이나 탄소나노튜브를 대체할 수 있는 차세대 물질로 주목받고 있다.
맥신을 리튬-황 전지의 양극 물질로 활용하기 위해서는 활물질인 황을 수용할 수 있는 공간을 제공해줘야 하고 또한 충‧방전 과정에서 생성된 리튬 폴리설파이드가 전해질에 녹아 음극 쪽으로 이동하여 발생하는 *셔틀 현상을 막을 수 있어야 한다.
☞ 셔틀 현상(Shuttle phenomenon): 방전 과정 중 리튬을 말단으로 가지는 황 체인인 중간물질(polysulfides)이 전해질에 녹아 양극과 음극 사이를 확산하면서 전지 내에서 소비되는 것으로서 결과적으로 양극 활물질 손실 및 사이클링 성능 저하를 초래한다.
맥신은 금속 *카바이드 형태로 *다공성이 거의 존재하지 않고 또 리튬 폴리설파이드와 상호작용이 적은 물질이기에 리튬-황 전지의 소재로 이용하기엔 적합하지 않다. 연구팀은 맥신이 포함된 수용액에 초음파를 주입하고, 맥신을 박리시켜 각 단일 맥신 층을 다량으로 제조한 후 충분한 공간을 확보하고 동시에 이산화탄소와 맥신 층을 반응시켜 표면에 리튬 폴리설파이드를 흡착할 수 있는 다량의 산화 티타늄 나노입자를 고르게 합성시켜 문제를 해결했다.
☞ 카바이드(carbide): 탄소와 그 밖의 하나의 원소로 이루어진 화합물.
☞ 다공성(porosity): 고체가 내부 또는 표면에 작은 빈틈을 많이 가지는 성질.
연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신 제작 기술은 맥신 전구체 종류에 상관없이 적용할 수 있다. 연구팀은 이와 함께 이 기술을 사용하면 길이 50~100 나노미터(nm), 지름 20 나노미터(nm)의 땅콩 모양의 나노입자들이 형성된 판형 맥신을 제조 가능함을 이번 연구를 통해 확인했다.
연구팀 관계자는 "산화 금속 판형 맥신 제조공정은 수용액처리 및 이산화탄소와의 반응으로 이뤄진 단순화된 공정이기 때문에 온도, 반응시간 조절로 다양한 판형 소자 제조 및 비용 절감이 가능하고 리튬-황 전지 성능을 강화하는데 기여할 것ˮ이라고 설명했다.
제1 저자인 이동규 박사과정 학생도 "이산화탄소와의 반응을 통해 제조된 산화 금속 판형 맥신은 리튬-황 전지의 양극뿐 아니라 분리막에 필름 형태로 성형해 셔틀 현상을 이중으로 방지할 수 있는 막을 제조할 수 있다ˮ면서 "균일한 금속산화물 나노입자가 형성된 판형 맥신은 전극 및 다양한 에너지 저장장치 소자에 사용될 것ˮ 이라고 소개했다.
한편 이번 연구는 한국연구재단의 Global Research Development Center Program과 Korea CCS R&D Center 기술개발사업의 지원을 받아 수행됐다.
2020.08.25
조회수 33039
-
임성갑 교수 연구팀, 초고굴절 투명 플라스틱 필름 개발에 성공
우리 대학 생명화학공학과 임성갑 교수 연구팀이 서울대 차국헌 교수(화학생물공학부) 및 경희대 임지우 교수(화학과) 연구팀과 공동 연구를 통해 단 한차례의 증착 반응을 이용해 1.9 이상의 고굴절률을 갖는 투명 플라스틱 필름을 제조하는 기술을 개발했다.
생명화학공학과 김도흥 박사와 장원태 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제적인 학술지 '사이언스 어드밴시스(Science Advances)'誌 7월 8일 자 온라인판에 게재됐다. (논문명: One-Step Vapor-Phase Synthesis of Transparent High-Refractive Index Sulfur-Containing Polymers
굴절률이란 진공상태에서의 빛의 속도와 어떤 물질에서의 빛의 속도의 비율로, 빛이 그 물질을 통과할 때 꺾이는 정도를 나타내는 척도다. 최근 모바일 기기 및 이미지 처리(imaging) 등에 사용되는 다양한 광학 부품의 소형화 추세와 함께 더욱 얇은 두께에서 많은 빛의 굴절을 유도하는 고굴절률 투명 소재의 수요가 급격히 늘어나고 있다.
고분자(플라스틱) 소재들은 특성이 우수하고, 다양한 형태로 쉽게 가공할 수 있다는 장점으로 인해 플라스틱 안경 렌즈 등과 같이 다양한 분야에 널리 활용되고 있다. 하지만 현재까지 개발된 고분자 소재 가운데 굴절률이 1.75를 넘는 재료는 극히 드물고, 비싼 원료와 복잡한 합성 과정이 필요하며, 무엇보다도 소재 관련 원천기술의 대부분은 일본이 보유하고 있다는 데 문제가 있다. 따라서 기존 재료와 비교할 때 가볍고 저렴하며 자유자재로 가공할 수 있는 광학 소자 부품 제작을 위해서는 고성능의 고굴절 고분자 재료 확보가 매우 중요하다.
공동 연구팀은 단 한 차례의 화학 반응만으로 1.9 이상의 굴절률을 가지면서도 투명도가 우수한 새로운 형태의 고분자 박막 제조 기술을 개발하는 데 성공했다. 공동 연구팀은 원소 상태의 황이 쉽게 승화한다는 점을 이용, 기화된 황을 다양한 물질과 중합하는 방법을 적용해 고굴절 고분자를 제조했다. 이 방법으로 지나치게 긴 황-황 사슬의 형성을 억제하는 한편 높은 황 함량에서도 우수한 열 안정성과 동시에 가시광선 전 영역에서 투명한 비결정성 고분자를 만드는 개가를 올렸다. 연구팀은 기상 반응의 특성 때문에, 실리콘 웨이퍼나 유리 기판뿐만 아니라, 미세 요철 구조가 있는 다양한 표면에도 표면 형상 그대로 고굴절 박막을 코팅할 수 있다는 점과 함께 1.9 이상의 굴절률을 갖는 고분자를 세계 최초로 구현하는 데 성공했다.
이 기술은 고 굴절 플라스틱 소재 원천기술의 국산화와 더불어, 디스플레이의 밝기 향상을 위한 표면 코팅 재료, 디지털카메라 센서용 마이크로 렌즈 어레이 등 얇은 두께와 높은 굴절률, 우수한 가공성 등이 요구되는 최신 IT 기기 분야에 널리 적용될 수 있을 것으로 기대가 크다.
이번 연구에 교신저자로 참여한 경희대학교 임지우 교수는 "기체 상태의 황을 고분자 제조에 이용한다는 발상의 전환이 초 고굴절, 고 투명성 고분자 박막 제조기술의 원천이 됐다ˮ면서 "향후 고굴절 소재뿐만 아니라 평면 렌즈, 메타 렌즈 등으로 대표되는 차세대 초경량 광학 소재를 구현하는데 핵심적인 역할을 할 것으로 기대된다ˮ고 말했다.
한편, 이번 연구는 과학기술정보통신부 글로벌프론티어사업(나노 기반 소프트 일렉트로닉스 연구단) 및 선도연구센터 지원사업(웨어러블 플랫폼 소재 기술센터), 그리고 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2020.07.14
조회수 27135
-
계층형 다공성 2차원 탄소 나노시트 합성
생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 기술을 개발했다.연구팀의 합성기술은 다공성 2차원 탄소 소재의 기공 크기와 구조 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술로 2차전지, 촉매 분야에서 고용량 전극 소재로 활용될 것으로 기대된다.
김성섭 박사, 주미은 석사가 공동 1 저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국화학회지(Journal of the American Chemical Society, JACS)’ 2월 13일 자 온라인판에 게재됐다. (논문명: Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets)
기존의 다공성 2차원 탄소 소재의 합성은 대부분 그래핀 소재에 기공을 형성하는 방식에 의존하지만, 이는 기공의 크기와 구조를 효율적으로 제어할 수 없다는 한계가 있다. 이를 해결하기 위해서 2차원 나노시트를 주형으로 이용해 블록공중합체의 자기조립 방식을 시도했으나 추가적인 주형의 합성이 필수적이기 때문에 합성 과정이 복잡하고 두께의 조절이 쉽지 않다는 문제가 발생한다.따라서 기공의 크기 등 나노 구조의 제어가 가능하면서도 손쉬운 합성을 할 수 있는 다공성 2차원 탄소 나노시트 합성법 개발의 필요성이 커지고 있다.
이 교수 연구팀은 블록공중합체, 단일중합체 고분자 혼합물의 상 거동을 이용해 마이크로 기공과 메조 기공, 그리고 8.5nm의 두께를 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 데 성공했다. 서로 섞이지 않는 두 종류의 단일중합체의 계면 사이에서 블록공중합체와 무기 전구체가 자기조립을 통해서 다공성 구조를 형성하는 원리이다.이 합성 방법은 별도의 주형이 필요하지 않은 간단한 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대했다. 이를 이용해 연구팀은 계층형 다공성 탄소 나노시트를 차세대 전지인 칼륨이온전지(potassium-ion batteries)의 음극에 적용해 용량을 기존 흑연 소재의 8배 이상 높이는 결과를 얻었다.
연구팀의 합성기술은 블록공중합체의 분자량 및 고분자대비 질량을 조절해 손쉽게 나노구조(기공 크기, 구조, 두께)를 조절할 수 있어 맞춤형 나노소재로 활용할 수 있을 것으로 기대된다. 이진우 교수는 “기존 다공성 2차원 무기 소재 합성기술의 문제점을 고분자 블렌드 성질을 이용해 해결할 수 있음을 보여줬다”라며 “이는 고분자 물리학과 무기 소재 합성을 이어주는 중요한 연구가 되며 다양한 에너지 장치에 적용될 수 있을 것이다”라고 설명했다.
이번 연구는 과학기술정통부와 한국연구재단이 추진하는 C1가스리파이너리 사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업 및 미래소재디스커버리사업의 지원을 통해 수행됐다.
2020.03.20
조회수 18861
-
급속충전 가능한 소듐이온 하이브리드 전지 개발
우리 대학 EEWS 대학원 강정구 교수 연구팀이 우수한 성능으로 급속 충전이 가능한 소듐 이온 기반의 하이브리드 전지를 개발했다.
연구팀은 질소가 올려진 메조 다공성 금속산화물 기반 전극을 이용해 높은 에너지 밀도와 고출력을 갖는 소듐 이온 에너지 저장 소자를 구현했다.
이 기술은 현재 주로 사용되는 리튬 이온 배터리보다 경제성 및 접근성 등에서 우수성을 가져 급속 충전이 필요한 휴대용 전자기기 등에 적용할 수 있을 것으로 기대된다.
강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 1월 27일 자에 게재됐다. (논문명: Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization to enable high performances in hybrid sodium-ion energy storages)
현재 가장 높은 점유율의 상업용 배터리는 리튬 이온 물질 기반의 저장 소자로 넓은 전압 범위와 에너지 밀도가 높다는 장점이 있다.
그러나 배터리 발화 및 짧은 수명 등의 문제와 리튬 광물의 높은 가격, 부족한 희토류 원소 매장량, 느린 전기화학적 반응 속도 등의 한계 때문에 충·방전이 오래 걸리고 고출력 특성을 요구하는 전기 자동차 및 차세대 모바일 기기에 적용하기 위해 많은 개선이 필요하다.
반면 소듐 이온 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 자원의 접근성이 높아 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다.
하지만 현재까지는 응용 분야에서 요구하는 성능에 미치지 못해 활용 폭이 좁다. 특히 기존의 금속산화물은 전기 전도성이 낮고 비표면적이 좁아 많은 양의 이온이 접근하는 데 한계가 있어 고성능을 구현하기에 어려움이 있었다.
연구팀은 질소가 도핑된 3차원 형태의 열린 메조 다공성 금속산화물 나노 구조체와 질소 도핑된 그래핀을 결합해 소듐 이온 기반 시스템에서 고용량과 고출력의 에너지 저장장치를 개발했다.
이번 연구에서 개발한 메조 다공성의 금속산화물 나노 구조체는 5~10나노미터 크기의 나노 입자들 사이에 다량의 열린 메조 기공이 형성돼 있고, 기공들이 나노 입자 사이에 3차원적으로 연결된 구조를 이뤄 질소 도핑 방법을 활용해 부족한 전기 전도도를 높일 수 있다.
이러한 메조 다공성 구조는 전해질이 기공을 통해 전극에 깊은 곳까지 수월한 침투가 가능하므로 전극 물질의 전체적인 표면이 에너지 저장에 활용돼, 높은 용량의 에너지 저장이 가능함과 동시에 충·방전 시간 역시 줄일 수 있다.
연구팀은 질소가 도핑된 다공성 금속산화물과 그래핀을 각각 음극과 양극에 각각 적용해 고성능의 소듐 이온 하이브리드 전지를 구현했다.
이 하이브리드 저장 소자는 소듐 기반의 배터리에 비해 같은 수준의 저장용량을 유지하면서 300배 이상 빠른 출력 밀도를 보이며, 수십 초 내 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용 가능할 것으로 기대된다.
강 교수는 “소듐 기반이기 때문에 저가 제작이 가능하고 활용성이 뛰어나 기존보다 높은 에너지 밀도를 갖는 에너지 저장장치의 상용화에 기여할 것이다”라며 “저전력 충전 시스템을 통해 급속 충전이 가능해 전기자동차와 휴대 가능한 전자 기기에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 소듐 이온 하이브리드 에너지 저장 장치의 구성 및 저장 메커니즘을 나타낸 모식도
그림2. 소듐 이온 하이브리드 저장 장치의 성능과 태양광 모듈을 활용한 실제 구동 이미지
2020.02.06
조회수 13535
-
오차율 10% 이내 정확도의 소재 설계 기술 개발
우리 대학 화학과 김형준 교수 연구팀이 소재 물성의 예측 오차율을 기존 기술보다 30% 이상 줄여 정확도를 한층 높인 소재 시뮬레이션 설계 기술을 개발했다.
이번 기술 개발을 통해 기존 40%에 달했던 소재 물성 예측 오차율을 10% 내로 줄임으로써 소재 개발에 걸리는 시간과 비용을 크게 절약할 수 있을 것으로 기대된다.
김민호 박사와 창원대 김원준 교수가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘미국 화학회지(Journal of the American Chemical Societry)’ 1월 10일 자 온라인판에 게재됐다. (논문명 : uMBD: A Materials-Ready Dispersion Correction that Uniformly Treats Metallic, Ionic, and van der Waals Bonding)
새로운 기능성 소재 개발의 중요성이 커지면서 컴퓨터 시뮬레이션을 이용해 소재 물성을 정확히 예측해 새로운 소재를 설계하는 기술이 주목받고 있다.
소재 시뮬레이션 기술은 실제로 소재를 합성하고 평가하기 전에 가상 실험으로 다양한 소재 물성을 예측 및 설계하는 기술로, 주로 밀도범함수 이론(Density functional theory)이라는 양자 이론에 바탕을 두고 있다.
기존의 밀도범함수 이론은 소재 계면에서 반데르발스 힘을 정확하게 설명하지 못한다는 문제가 있었다. 반데르발스 힘은 전하의 일시적 쏠림으로 인해 분자가 순간적으로 극성을 띠면서 나타나는 당기는 힘을 뜻하는데, 이를 정확히 기술하지 못하기 때문에 소재 물성 예측 정확도가 떨어진다는 한계가 있다.
연구팀은 반데르발스 힘을 정확하고 효과적으로 기술할 수 있는 새로운 이론을 개발하고, 이를 밀도범함수 이론에 접목해 소재 시뮬레이션 기술의 정확도를 한층 높이는 데 성공했다.
연구팀은 100여 종의 다양한 소재를 테스트한 결과 40% 정도에 달했던 기존의 소재 물성 예측 오차율이 새 기술을 통해 10% 이내로 줄어듦을 확인했다.
특히 반데르발스 힘은 분자 소재부터 금속 및 반도체 소재에 이르기까지 거의 모든 재료 내에서 소재 물성을 결정하는 데 중요한 역할을 해, 연구팀의 새로운 이론은 다양한 차세대 기능성 소재 설계 연구에 적용 가능할 것으로 기대된다.
실제로 연구팀의 새 시뮬레이션 방법을 통해 리튬 이온 배터리 물질의 전압이나 2차원 소재의 박리 에너지를 예측하는 과정에서 높은 정확도를 보인 것으로 확인됐다.
김형준 교수는 “소재 개발 연구에 있어 경쟁력 강화를 위해서 기초 연구의 중요성이 점차 커지고 있다”라며 “새로 개발한 소재 시뮬레이션 기술을 배터리 소재, 에너지 전환 촉매 소재, 2차원 나노 소재 등 다양한 기능성 소재 설계 연구에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 미래소재디스커버리 사업과 선도연구센터 지원 사업 (SRC)의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 새롭게 개발한 이론 (uMBD)을 이용한 소재 시뮬레이션 기술과 기능성 소재 설계
2020.01.29
조회수 13811
-
소재 부품 장비 분야 글로벌 경쟁력 강화 토론회 개최
우리대학이 오는 14일 국회에서 `소재·부품·장비 분야 글로벌 경쟁력 강화 토론회'를 개최한다. 소재·부품·장비 분야의 핵심 원천기술 경쟁력 강화 방안을 논의하는 자리로 이종걸(더불어민주당) 의원과 노웅래 과학기술정보방송통신위원장(더불어민주당)이 공동으로 주최하고, KAIST가 주관한다.
소재·부품·장비는 우리나라 주력 산업의 뿌리이자 4차 산업혁명 시대의 기술 경쟁력 핵심요소이자 최고의 제품만이 시장에서 살아남는 독과점 구조로 운영되고 있다. 일본이 장기간에 걸쳐 관련 분야의 기술을 축적하는 동안 국내 기업들은 글로벌 가치사슬 확장의 여파 및 경영 효율화 관점에서 대다수의 전략 품목 재료를 해외 수입에 의존해왔다. 그러나 일본의 화이트리스트 제외 사태를 계기로 이를 근본적으로 해결할 수 있는 국가적 전략을 경제 안보 차원에서 마련해야 한다는 필요성이 대두되고 있다.
14일 열릴 토론회에서는 산업계, 학계, 정부 등 각 분야의 전문가들이 소재·부품·장비 분야의 기술 현황 및 문제점과 그에 따른 대응 방안을 논의하고 원천 핵심기술 경쟁력 확보를 위한 정책을 제안할 예정이다.
신성철 KAIST 총장은 `대한민국, 과학기술 기반 경제 강국 전략'을 주제로 기조 발표에 나선다. 한국이 4차 산업혁명 시대의 기술 패권 경쟁에서 살아남으려면 기술 기반의 경제 강국을 실현해야 한다는 점을 강조하고 특히, 소재·부품·장비 산업의 글로벌 경쟁력을 제고할 수 있는 전략을 중점적으로 제시할 예정이다.
소재 분과에서는 정연식 KAIST 신소재공학과 교수가 `혁신소재: 인류사의 게임 체인저'를 주제로 인류사에서 소재의 의미와 발전사를 설명한다. 이와 함께 대학의 소재 연구 사례 및 정부 출연연구기관의 소명을 언급하고 산·학·연 간의 상생 방안 등 소재 분야 R&D 정책 방향을 제언할 예정이다.
부품 분과에서는 장재형 GIST 전기전자컴퓨터공학부 교수가 `우리나라 부품산업 위기와 기회'를 주제로 소재·부품·장비 분야의 당면 과제를 역설한다. 또한, 부품사업 기술 경쟁력 확보 방안 및 과학기술특성화대학의 역할에 대해서 논할 예정이다.
장비 분과에서는 황철주 주성엔지니어링(주) 회장이 `4차 산업혁명 시대에서의 대한민국의 경쟁력'을 주제로 발표한다. 반도체·디스플레이 산업의 세계적인 경쟁력을 구축하기 위한 기업의 전략을 소개하고 국가 전략기술 보유 기업의 육성과 지원책을 제언할 예정이다.
분과별 발제자 외에도 최성율 KAIST 소재부품장비기술자문단 단장, 권기석 과학기술정보통신부 성장동력기획과 과장, 김명운 ㈜디엔에프 대표가 토론 패널로 참석한다. 소재·부품·장비 분야 기술력 확보 방안의 타당성을 비롯해 R&D 투자의 시의적정성, 정부 정책의 실효성 등 산업과 기술을 활성화 시킬 수 있는 전반적인 방안에 관하여 심도 있게 논의할 예정이다.
토론회 좌장을 맡은 박현욱 KAIST 연구부총장은 "이번 토론회를 통해 소재·부품·장비 분야 핵심원천기술 경쟁력을 확보할 수 있는 구체적인 전략을 마련하고 이를 성공적으로 실행하기 위한 산·학·연·관의 협력 방안을 찾아나갈 좋은 기회가 될 것으로 기대한다ˮ고 밝혔다.
2019.10.11
조회수 13178