-
김상현 교수, 과기정통부 장관상 수상
우리 대학 전기및전자공학부 김상현 교수가 7월 7일부터 9일까지 일산 킨텍스에서 열린 제19회 국제나노기술 심포지엄 및 나노융합대전 (이하 나노코리아 2021)에서 연구혁신부문 과학기술정보통신부 장관상을 수상했다.
김상현 교수는 모놀리식 3차원 집적 기술 및 그를 이용한 반도체 소자 분야에서 탁월한 연구성과를 거두고 있다. 지난 수년간 III-V족 화합물 반도체 및 Ge의 3차원 집적 공정 방식을 제시 및 개발하였으며 이를 활용한 다양한 소자 연구 분야를 선도하고 있다.
특히, 최근에는 Si CMOS 회로 위에 III-V 고성능 RF소자를 모놀리식 3차원 집적하여 세계 최고 수준의 RF 특성을 확보하였고 향후 통신소자 및 양자 컴퓨팅용 readout 회로에서의 응용 가능성을 제시하였다. 또한 비교적 큰 사이즈의 소자에서도 최첨단 Si CMOS의 RF를 능가할 수 있다는 점에서 새로운 형태의 칩제작 가능성을 보여주었다고 할 수 있다.
현재, 김상현 교수는 모놀리식 3차원 집적 기술을 활용 시 성능을 극대화할 수 있는 인공지능 소자, 이미지 센서, 마이크로LED 디스플레이와 같은 다양한 반도체 소자 연구를 수행하고 있다.
2021.07.26
조회수 7509
-
3차원 적층형 화합물 반도체 소자 제작 성공
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 극대화해 기존의 통신 소자의 단점을 극복하는 화합물 반도체 소자 집적 기술을 개발했다고 14일 밝혔다.
☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다.
우리 대학 전기및전자공학부 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 광주과학기술원 장재형 교수 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : High-performance InGaAs-On-Insulator HEMTs on Si CMOS for Substrate Coupling Noise-free Monolithic 3D Mixed-Signal IC).
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
반도체 소자는 4차 산업 혁명의 특징인 초연결성 구현을 위한 핵심 통신 소재 및 부품으로서 주목받고 있다.
특히 통신 신호, 양자 신호는 아날로그 형태의 신호이고 신호전달 과정에서 신호의 크기가 약해지거나 잡음이 생겨 신호의 왜곡이 생기기도 한다. 따라서 이러한 신호를 주고받을 때 고속으로 신호의 증폭이 필요한데 이러한 증폭 소자에서는 초고속, 고출력, 저전력, 저잡음 등의 특성이 매우 중요하다. 또한 통신 기술이 발전함에 따라 이를 구성하는 시스템은 점점 더 복잡해져 고집적 소자 제작기술이 매우 중요하다.
통신 소자는 통상적으로 두 가지 방식으로 구현된다. 실리콘(Si)을 사용해 집적도 높은 Si CMOS를 이용해 증폭 소자를 구현하는 방법과 *III-V 화합물 반도체를 증폭 소자로 제작하고 기타 소자들을 Si CMOS로 제작해 패키징 하는 방식이 있다. 그러나 각각의 방식은 단점이 존재한다. 기존의 실리콘(Si) 기술은 물성적 한계로 인해 차단주파수 특성 등 통신 소자에 중요한 소자 성능 향상이 어려우며 기판 커플링 잡음 등 복잡한 신호 간섭에 의한 잡음 증가 문제가 존재한다. 반면, III-V 화합물 반도체 기술은 소자 자체의 잡음 특성은 우수하지만 다른 부품과의 집적/패키징 공정이 복잡하고 이러한 패키징 공정으로 인해 신호의 손실이 발생하는 문제가 존재한다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재
연구팀은 이러한 문제 해결을 위해 증폭 소자 이외의 소자 및 디지털 회로에서 좋은 성능을 낼 수 있는 Si CMOS 기판 위에 아날로그 신호 증폭 성능이 매우 우수한 III-V 화합물 반도체 *HEMT를 3차원 집적해 Si CMOS와 III-V HEMT의 장점을 극대화하는 공정 및 소자 구조를 제시했다. 3층으로 소자를 쌓아나감으로써 같은 기판 위에 집적할 수 있는 방식이다. 이와 동시에 기판 신호 간섭에 의한 잡음을 제거할 수 있음을 증명했다.
☞ HEMT: High-Electron Mobility Transistor
연구팀은 하부 Si CMOS의 성능 저하 방지를 위해 300oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 Si CMOS의 성능을 그대로 유지할 수 있었다.
또한 고성능 상부 III-V 소자 제작을 위해서 InGaAs/InAs/InGaAs의 양자우물 구조를 도입해 높은 전자 수송 특성을 실현했으며 100 나노미터(nm) 노드 공정 수준으로도 세계 최고 수준의 차단 주파수 특성을 달성했다. 이는 10 나노미터(nm) 이하 급의 최첨단 공정을 사용하지 않고도 그 이상의 우수한 성능을 낼 수 있는 융합 기술로 향후 기존과 다른 형태의 파운드리 비즈니스 방식의 도입 가능성을 증명했다고 할 수 있다.
더불어 연구진은 이러한 3차원 집적 형태로 소자를 제작함으로써 기존에 SI CMOS에서 존재하는 기판 간섭에 의한 잡음을 해결할 수 있음을 실험을 통해 최초로 증명했다.
김상현 교수는 “디지털 회로 및 다양한 수동소자 제작에 최적화된 Si CMOS 기판 위에 증폭기 등의 능동소자 특성이 현존하는 어떤 물질보다 우수한 III-V 화합물 반도체 소자를 동시 집적할 가능성을 최초로 입증한 연구로, 향후 통신 소자 등에 응용이 가능할 것으로 생각한다”라며 “이번 기술은 향후 양자 큐빗의 해독 회로에도 응용할 수 있어 그 확장성이 매우 큰 기술이다. 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다”라고 말했다.
한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업 등의 지원을 받아 수행됐다.
2021.06.14
조회수 54687
-
양용수 교수팀, 나노물질 표면과 내부 3차원 원자구조 규명
우리 대학 물리학과 양용수 교수 연구팀이 인공신경망을 이용한 주사투과전자현미경(STEM) 기반 원자분해능 전자토모그래피 기술을 개발, 이를 적용해 백금 나노입자 표면과 내부의 3차원 원자 구조를 15 pm(피코미터)의 정밀도로 규명했다. 1 pm(피코미터)는 1 미터의 1조 분의 일에 해당하는 단위로, 15 pm의 정밀도는 수소 원자 반지름의 약 1/3 정도에 해당하는 매우 높은 수준이다.
전자토모그래피는 전자현미경으로 다양한 각도에서 측정된 2차원 투영된 이미지로부터 3차원 이미지를 얻어내는 기술이다. 최근 주사투과전자현미경과 3차원 토모그래피 재구성 알고리즘의 기술 발전으로 전자토모그래피의 분해능은 단일 원자까지 구분할 수 있는 수준에 이르렀다. 이를 통해 많은 나노물질의 구조와 물성의 근본적인 이해가 가능해졌다.
그러나 일반적인 전자토모그래피 실험에서는 시편을 탑재한 홀더 또는 그리드가 전자빔을 가리게 되는 실험적 제약으로 인해 고 각도(약 75도 이상)의 이미지 측정이 불가능하다. 이로 인해 고 각도 방향의 분해능이 저하되고, 재구성된 3차원 이미지에 원치 않는 노이즈들이 생겨난다. 이러한 현상을 손실 웨지 문제(missing wedge problem)라 부르며, 이러한 문제 때문에 기존의 전자토모그래피 방법으로는 표면/계면의 3차원 원자 구조를 고분해능으로 측정하기 힘들었다.
양용수 교수 연구팀은 인공신경망을 이용해 고 각도 방향의 데이터를 복원함으로써 이러한 손실 웨지 문제(missing wedge problem)를 해결하는 데 성공했다. 이를 통해 고분해능 3차원 표면/계면 원자 구조의 결정이 가능하게 됐고, 나노물질의 표면/계면에서 나타나는 물성의 메커니즘을 단일 원자 수준에서 근본적으로 해석할 수 있게 됐다.
물리학과 이주혁 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 30일 字 게재됐다. (논문명 : Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography)
연구팀은 모든 물질은 원자들로 구성돼 있다는 원자성(atomicity)에 근거해 원자 구조 토모그래피 3차원 데이터를 시뮬레이션을 통해 생성했다. 고 각도의 데이터가 손실된 불완전한 원자 구조 토모그래피 3차원 데이터와 이상적인 원자 구조 3차원 데이터 사이의 상관관계를 학습시키기 위해 인공지능 신경망(3d-unet기반 모델)을 지도학습했다. 원자성에 기반해 학습된 인공지능 신경망은 손실된 고 각도 데이터를 성공적으로 복원함으로써 손실 웨지 문제로 인한 분해능 저하 문제를 해결했다. 이는 높은 정밀도의 3차원 표면/계면 원자 구조 규명을 가능하게 한다.
연구팀은 개발된 인공신경망 기반 전자토모그래피 기술을 이용해 실제 백금 나노입자의 3차원 표면 및 내부 구조를 단일 원자 수준에서 규명할 수 있었다. 원자 구조의 정밀도는 인공신경망 적용 전 26 pm에서 적용 후 15 pm으로 큰 폭으로 향상됐다.
연구를 주도한 양용수 교수는 "인공신경망 기반 전자토모그래피는 구성 원소, 물질의 구조/형태에 의존하지 않는 매우 일반적인 방법으로서, 전자토모그래피로 얻은 원자 구조 부피데이터에는 종류에 상관없이 바로 적용할 수 있다ˮ며 "이를 통해 많은 물질의 3차원 표면/계면 원자 구조가 정밀하게 규명되고, 표면/계면에서 일어나는 물성과 이에 연관된 메커니즘의 근본적인 이해를 바탕으로 고성능 촉매 개발 등에 응용될 것ˮ이라고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 글로벌 특이점 사업(M3I3)의 지원을 받아 수행됐다.
2021.04.05
조회수 85525
-
인공지능으로 3차원 고해상도 나노입자 영상화 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 나노입자의 3차원 형상과 조성 분포의 복원 성능을 획기적으로 향상한 인공지능 기술을 개발했다고 16일 밝혔다. 공동연구팀은 에너지 분산형 X선 분광법(EDX)을 주사 투과전자현미경(STEM)과 결합한 시스템을 활용했다.
이번 연구를 통해 나노입자를 형성하고 있는 물질의 형상과 조성 분포를 정확하게 재구성함으로써, 실제 상용 디스플레이를 구성하는 양자점(퀀텀닷)과 같은 반도체 입자의 정확한 분석에 도움을 줄 것으로 기대된다.
예종철 교수 연구팀의 한요섭 박사, 차은주 박사과정, 정형진 석사과정과 삼성종합기술원의 이은하 전문연구원팀의 장재덕, 이준호 전문연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)' 2월 8일 字 온라인판에 게재됐다. (논문명 : Deep learning STEM-EDX tomography of nanocrystals)
에너지 분산형 X선 분광법(이하 EDX)은 나노입자의 성분 분석에 주로 이용되며, X선과 반응한 물체의 성분에 따라 고유한 방출 스펙트럼을 보인다는 점에서 화학적인 분석이 가능하다. 퀀텀닷 및 배터리 등 다양한 나노 소재의 열화 메커니즘과 결함을 해석하기 위해 형상 및 조성 분포 분석이 가능한 이 분광법의 필요성과 중요도가 급증하고 있다.
그러나 EDX 측정 신호의 해상도를 향상하기 위해, 나노 소재를 오랜 시간 전자빔에 노출하면 소재의 영구적인 피해가 발생한다. 이로 인해 나노입자의 3차원 영상화를 위한 투사(projection) 데이터 획득 시간이 제한되며, 한 각도에서의 스캔 시간을 단축하거나 측정하는 각도를 줄이는 방식이 사용된다. 기존의 방식으로 획득된 투사 데이터를 이용해 3차원 영상을 복원할 시, 미량 존재하는 원자 신호의 측정이 불가능하거나 복원 영상의 정밀도와 해상도가 매우 낮다.
그러나 공동 연구팀이 자체 개발한 인공지능 기반의 커널 회귀(kernel regression)와 투사 데이터 향상(projection enhancement)은 정밀도와 해상도를 획기적으로 발전시켰다. 연구팀은 측정된 데이터의 분포를 네트워크가 스스로 학습하는 인공지능 기반의 커널 회귀를 통해 스캔 시간이 단축된 투사 데이터의 신호 대 잡음비(SNR)를 높인 데이터를 제공하는 네트워크를 개발했다. 그리고 개선된 고화질의 EDX 투사 데이터를 기반으로 기존의 방법으로는 불가능했던 적은 수의 투사 데이터로부터 더욱 정확한 3차원 복원 영상을 제공하는 데 성공했다.
연구팀이 개발한 알고리즘은 기존의 EDX 측정 신호 기반 3차원 재구성 기법과 비교해 나노입자를 형성하고 있는 원자의 형상과 경계를 뚜렷하게 구별했으며, 복원된 다양한 코어-쉘(core-shell) 구조의 퀀텀닷 3차원 영상이 샘플의 광학적 특성과 높은 상관관계를 나타내는 것이 확인됐다.
예종철 교수는 "연구에서 개발한 인공지능 기술을 통해 상용 디스플레이의 핵심 기반이 되는 퀀텀닷 및 반도체 소자의 양자 효율과 화학적 안정성을 더욱 정밀하게 분석할 수 있다ˮ고 말했다.
2021.02.16
조회수 85631
-
열을 전기로 변환하는 하프호이즐러 물질의 나노구조 제어 성공
우리 대학 신소재공학과 최벽파 교수 연구팀이 경북대 이승훈 교수(신소재공학과) 연구팀과 공동연구를 통해 *준 안정상을 활용, *하프호이즐러 *열전재료의 나노구조를 제어하는 새로운 방법을 개발했다고 11일 밝혔다.
☞ 준 안정상(metastable phase): 어떤 물질의 가장 안정한 상(고체, 액체, 기체 등)은 아니지만 꽤나 안정하여 유지되는 상.
☞ 하프호이즐러(half-Heusler) 화합물: 금속 간 화합물(합금)의 일종으로 열전발전, 태양광 발전, 자성재료 등의 에너지 재료로 각광을 받는 물질.
☞ 열전발전: 온도 차에 의해 생긴 전위차를 이용해 전기를 생산하는 발전방식.
열전 소자는 열에너지를 전기로 직접적으로 변환시키는 에너지 소자다. 소자의 양단에 온도 차가 존재할 때 내부의 전하가 이동함으로써 전기를 발생시킨다.
좋은 열전재료가 되기 위해서는 소자 양단의 온도 차는 오래 유지돼야 하고 전하는 잘 이동해야 하므로 열전도도는 낮아야 하고 전기 전도도는 높아야 한다.
다양한 열전재료 중 하나인 하프호이즐러 물질은 폐열(에너지의 생산, 소비 과정에서 사용되지 못하고 버려지는 열)이 풍부하고 중온 영역(300~800℃)에서 높은 효율의 열전발전이 가능하다. 특히 열 안정성과 기계적 특성(강도)이 우수하고 높은 제벡 계수(온도 차이를 전력으로 변환하는 정도)와 출력 계수를 지니고 있는데 독성이 없고 지구에 풍부하게 매장된 원소로 이뤄져 있다. 하지만 상대적으로 높은 열전도도로 인해 낮은 열전성능을 갖는다는 점이 약점이다.
열 전도도를 낮추기 위해서는 포논(입자)의 산란을 극대화해야 하는데 이를 위해서는 서로 다른 상의 경계를 만든 후 나노 결정화를 통해 달성할 수 있다. 이 때문에 기존에는 하프호이즐러 합금을 제조한 뒤 물리적으로 파쇄해 나노분말을 제조하고 이를 가열해 굳히는 방법을 사용해왔다. 하지만 이 방법은 나노결정의 크기 제어는 물론 복잡한 미세구조 형성이 어렵기 때문에 열전도도를 획기적으로 감소시키기는 매우 어렵다.
최 교수 연구팀은 문제해결을 위해 준 안정상(비정질)의 결정화 방법을 활용했다. 준 안정상은 안정상에 비해 상대적으로 덜 안정한 상을 의미하는데 열처리를 통해 안정상(고체, 액체, 기체 등)으로 쉽게 상변화를 일으킬 수 있다. 이때, 열처리 온도에 따라 준 안정상(비정질)의 결정화 거동은 다양하게 변화하고 이를 이용해 나노결정의 크기와 상을 제어할 수 있다.
구체적으로 연구팀은 급속냉각 공정을 이용해 하프호이즐러(NbCo1.1Sn) 조성을 가진 비정질(준 안정상)을 제조한 뒤 비교적 저온에서 짧은 열처리를 통해 하프호이즐러 물질 내부에 풀호이즐러(NbCo2Sn) 나노 석출물이 존재하는 복잡한 나노구조를 만들었다.
최 교수 연구팀이 새로 개발한 이 방법은 기존의 방법과는 달리 고온에서의 장시간의 열처리가 필요 없으므로 쉽고 경제적이면서도 더욱 복잡하고 세밀한 나노구조의 형성이 가능하다.
연구팀은 특히 이번 연구에서 3차원 원자 탐침 현미경(Atom probe tomography)과 투과 전자 현미경(Transmission electron microscope)을 활용했는데 하프호이즐러 물질 내부에 존재하는 수 나노미터의 풀호이즐러 석출물의 존재를 규명하는 데도 성공했다.
최벽파 교수는 "이번 연구에서 새롭게 제안된 방법을 활용해 만든 열전재료는 기존 대비 복잡한 나노구조를 갖고 있어 3배 이상의 열전도도 감소 와 함께 열전발전 성능도 획기적으로 증가하는 효과가 있을 것으로 기대된다ˮ고 말했다.
신소재공학과 정찬원 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지인 `나노 에너지(Nano Energy, IF: 16.602)' 10월 20일 字 온라인 판에 실렸다. (논문명: Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor)
한편 이번 연구는 한국연구재단 과학기술 분야 기초연구사업인 기초연구실지원사업 (중온(300-800 ℃) 작동형 합금 기반 half-Heusler계 고성능/고강도 열전소재 개발)의 지원을 통해 수행됐다.
2020.11.12
조회수 35070
-
뇌 구조를 정확히 볼 수 있는 3차원 분석기술 개발
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 뇌신경과학 연구에서 광범위하게 사용되는 실험용 쥐의 뇌 절편 영상을 자동으로 보정하고 규격화하여 신경세포의 3차원 분포정보를 정확하게 얻을 수 있는 핵심 분석 기술을 개발했다.
이 기술은 실험자의 경험에 의존하던 기존 분석 방식의 문제점을 해결하는 한편 여러 개체에서 얻은 뇌 이미지를 표준적인 3차원 지도상에서 비교 분석할 수 있도록 한다. 이는 기존의 개체별 분석에서는 관측하기 힘든 뇌세포 간 상호 연결 형태의 정확한 공간적 분포를 발견할 수 있는 길을 열었다는 점에서 의미가 크다.
연구팀은 생명과학과 이승희 교수팀과의 협력 연구를 통해 실험에서 얻어진 쥐의 뇌 절편 데이터를 분석했는데, 이 기술을 적용한 결과 시각시스템의 초기구조인 외측 슬상핵(Lateral geniculate nucleus)과 시각피질 (Visual cortex) 사이의 정확한 연결 구조 분포를 측정할 수 있었다. 기존 분석 방식으로는 불가능했던 다중 개체로부터 얻어진 데이터의 표준화를 통해 뇌 전역에 걸친 신경세포의 연결성을 분석할 수 있음을 확인한 것이다.
뇌인지공학프로그램 최우철 박사과정과 송준호 연구원이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `셀(cell)'의 온라인 자매지 `셀 리포츠(Cell Reports)' 5월 26일 자에 게재됐다. (논문명 : Precise mapping of single neurons by calibrated 3-D reconstruction of brain slices reveals topographic projection in mouse visual cortex).
이에 앞서 연구팀은 이 기술을 활용해 UC 버클리대학의 양단(Yang Dan) 교수와의 공동연구에도 참여했고 그 결과를 국제 학술지 `사이언스 (Science)' 1월 24일 자에 발표했다. (논문명: A Common Hub for Sleep and Motor Control in the Substantia Nigra).
통상 쥐의 뇌 절편 영상을 이용한 연구에서는 특정 단백질에 형광물질을 발현시킨 뇌를 잘라 신경세포의 분포 등을 분석하는 방법이 광범위하게 사용된다. 이때 형광을 발현하는 신경세포를 현미경을 통해 연구자의 육안으로 관측하고, 얼마나 많은 신경세포가 뇌의 어느 특정 영역에 위치하는지 일일이 수동적으로 분석한다. 이런 방법은 연구자의 경험에 크게 의존하여 오차가 클 수밖에 없고, 각각의 개체에서 관측된 신경세포의 위치나 수량을 표준적인 공통의 방법으로 동시에 분석할 수 없다는 한계를 갖고 있다.
백 교수 연구팀은 미국의 Allen Brain Atlas 프로젝트에서 제공한 쥐 두뇌의 3차원 표준 데이터에 기반하여, 임의의 각도에서 잘라낸 뇌 절편 이미지들을 SURF(Speeded Up Robust Feature Points) 특징점과 HOG(Histogram of Oriented Gradients descriptor) 형상 기술자를 이용하여 데이터베이스와 비교하는 계산적인 분석 방법을 사용했다.
그 결과, 실험에서 얻은 뇌 이미지와 가장 잘 일치하는 데이터베이스의 3차원 위치를 100마이크로미터(μm), 1도 이내의 오차로 찾아낼 수 있었다. 연구팀은 이를 통해 각 2차원 뇌 이미지의 위치 정보를 3차원 공간상의 위치로 정확히 계산하고, 여러 개체에서 얻어진 신경 세포의 위치를 동일한 3차원 공간에 투영해 정확하게 분석할 수 있음을 확인했다.
따라서 이 기술을 활용하면 다양한 기법으로 생성된 뇌 슬라이스 이미지를 이용해 신경세포의 3차원 위치를 뇌 전체에서 자동적으로 계산할 수 있어, 기존의 방법으로는 분석하기 어려운 수천~수만 개의 신경세포들의 정확한 뇌 내 분포 위치 및 상대적 공간 배열을 한번에 분석하는 것이 가능하다.
또 신경세포들의 연결성을 표준적으로 보정된 3차원 공간에서 표현할 수 있어 특정 뇌 영역 간의 연결은 물론 뇌 전역의 네트워크 분포를 여러 개체의 데이터를 사용해 동시분석도 가능하다. 따라서 기존 방식의 동물실험 분석에서 요구되던 시간과 비용을 크게 줄일 수 있을 것으로 기대된다.
올 6월 현재 백 교수 연구팀의 이 기술은 KAIST내 여러 실험실과 미국 MIT, 하버드(Harvard), 칼텍(Caltech), UC 샌디에고(San Diego) 등 세계 유수 대학의 연구 그룹에서 진행하는 뇌 신경 세포의 네트워크 분석에 활용되고 있다.
백세범 교수는 "이번 연구를 통해 개발된 기술은 형광 뇌 이미지를 이용하는 모든 연구에 바로 적용할 수 있을 뿐만 아니라 그 밖에 다양한 종류의 이미지 데이터에도 광범위하게 적용 가능하다ˮ면서 "향후 쥐의 뇌 슬라이스를 이용하는 다양한 분석에 표준적인 기법으로 자리 잡을 수 있을 것으로 기대된다ˮ고 말했다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업, KAIST의 모험연구사업의 지원을 받아 수행됐다.
2020.06.08
조회수 17402
-
빛 투과율 조절하는 능동형 광학 필름 개발
우리 대학 연구진이 기존 창호시스템을 교체하지 않고서도 투과율을 큰 폭으로 자유롭게 조절할 수 있는 에너지 절감형 스마트 윈도우 등으로 활용이 가능한 새로운 광학 필름 제작 기술을 개발했다.
우리 대학 신소재공학과 전석우 교수와 건설및환경공학과 홍정욱 교수·신소재공학과 신종화 교수 공동연구팀이 3차원 나노 복합체를 이용, 에너지의 효율적인 신축변형을 통해 세계 최고 수준의 가시광 투과율 조절이 가능한 능동형 광학 필름을 개발하는데 성공했다고 14일 밝혔다.
전석우 교수와 홍정욱 교수가 교신 저자로, 조동휘 박사과정 학생과 신라대학교 심영석 교수가 공동 1저자로 참여한 이번 연구는 재료 분야의 세계적인 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 4월 26일 字 온라인판에 게재됐다. (논문명: High-Contrast Optical Modulation from Strain-Induced Nanogaps at Three-Dimensional Heterogeneous Interfaces)
해당 연구진들은 정렬된 3차원 나노 네트워크에 기반한 신축성 나노 복합체를 이용해, 가시광 투과율을 최대 90%에서 16%까지 조절 가능한 넓은 면적의 광학 필름 제작에 필요한 원천 기술을 확보했다. 약 74%의 범위를 갖는 이는 평균적으로 46%의 범위를 가졌던 기존 2차원 필름의 수준을 훨씬 뛰어넘는 세계 최고 수준의 기술이다.
최근 제로 에너지 빌딩, 스마트 윈도우, 사생활 보호 등 에너지 저감/감성 혁신 응용에 대한 관심이 급증함에 따라, 능동형 광학 변조 기술이 주목받고 있다. 기존 외부 자극 (전기/열/빛 등)을 이용한 능동형 광학 변조 기술은 느린 반응속도와 불필요한 색 변화를 동반하고 낮은 안정성 등의 이유로 선글라스, 쇼케이스, 광고 등 매우 제한적인 분야에 적용돼왔기 때문에 현재 새로운 형태의 광학 변조 기술 개발이 활발히 진행 중이다.
에너지 효율적인 신축 변형을 이용한 광학 변조 기술은 비교적 간단한 구동 원리와 낮은 에너지 소비로 효율적으로 투과율을 제어할 수 있는 장점을 지녀 그동안 학계 및 관련 업계에서 집중적인 관심을 받아왔다. 그러나 기존 연구에서 보고된 광 산란 제어를 유도하는 구조는 대부분 광학 밀도가 낮은 2차원 표면 구조에 기반하기 때문에 좁은 투과율 변화 범위를 갖고, 물 등 외부 매질과 인접할 때 광학 변조기능을 잃는 문제를 가지고 있다. 특히, 비 정렬 구조에 바탕을 두고 있어 광학 변조 특성이 균일하지 못해서 넓은 면적으로 만들기도 힘들다.
연구팀은 정렬된 3차원 나노구조 제작에 효과적인 근접장 나노패터닝 (PnP, Proximity-field nanopatterning) 기술과 산화물 증착(증기를 표면에 얇은 막으로 입힘)을 정교하게 제어할 수 있는 원자층 증착법 (ALD, Atomic layer deposition)을 이용했다. 이에 주기적인 3차원 나노쉘 (nanoshell) 구조의 알루미나 (alumina)가 탄성중합체에 삽입된 신축성 3차원 나노복합체 필름을 현존하는 광학 변조 필름 중 가장 큰 면적인 3인치×3인치 크기로 제작하는 데 성공했다.
광학 필름을 약 60% 범위에서 당겨 늘리는 경우, 산화물과 탄성중합체의 경계면에서 발생하는 수없이 많고 작은 구멍에서 빛의 산란 현상이 발생하는데 연구진은 이를 이용해 세계 최고 수준의 가시광 투과율 조절 범위인 약 74%를 달성했다. 동시에 10,000회에 걸친 반복적인 구동 시험과 굽힘과 뒤틀림 등 거친 변형, 70℃ 이내 고온 환경에서의 구동, 물속에서의 구동 특성 등을 확인한 결과 높은 내구성과 안정성을 확인했다. 이와 함께 재료역학적‧광학적 이론 해석을 바탕으로 경계면에서 발생하는 광 산란 현상 메커니즘도 규명하는 데 성공했다.
전 교수 공동연구팀이 개발한 이 기술은 기존 창호 시스템 교체 없이도, 간단한 얇은 필름 형태로 유리 표면에 부착함으로써 투과율 조절이 가능한 에너지 절감형 스마트 윈도우로 활용이 가능하다. 이 밖에 두루마리 타입의 빔프로젝터 스크린 응용 등 감성 혁신적인 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 다부처 공동사업과 글로벌 프론티어 사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.05.14
조회수 22575
-
김용관 박사, BK21 사업 20주년 기념행사에서 3D 스케칭 공연 선보여
〈 김용관 박사의 3D 스케칭 시연 장면 〉
우리 대학 산업디자인학과 김용관 박사가 지난 6월 28일 서울 코엑스에서 열린 BK21 사업 20주년 기념 심포지엄 개막 무대에서 3D 스케칭 공연을 선보였다.
이날 공연은 유은혜 사회부총리 겸 교육부 장관을 비롯한 1천여 명의 정부 및 대학 관계자 앞에서 비상(飛上)이라는 제목으로 15분간 진행됐다. 김용관 박사는 디지털 펜과 태블릿을 이용해 다양한 3차원 형상의 비행기가 줄지어 날아오르는 장면을 연출해 20년 역사의 BK21 사업을 발판 삼아 앞으로 나아가는 대한민국 인재들의 미래를 표현했다.
현장에서 김용관 박사는 “BK21 사업의 지원으로 국내외 많은 산업 및 학계 종사자에게 최신 연구 성과를 적극적으로 홍보할 수 있었다”라며 “앞으로도 후배 연구자들에게 많은 도움 부탁드린다”고 말했다.
현재 KAIST 산업디자인학과 스케치랩(배석형 교수)에서 박사후연구원으로 재직 중인 김용관 박사는 2017년 손 자세 정보를 3D 스케칭에 활용하는 융합적 연구 성과를 인정받아 BK21 사업의 우수 연구 인력으로 부총리 표창을 받았다.
김용관 박사는 작년 8월 산업디자인학과에서 박사학위를 취득했으며, 같은 해 손 움직임 정보를 결합한 쾌속 3D 스케칭 기술로 ACM CHI 국제학술대회에서 최우수논문상을 수상한 바 있다.
2019.07.08
조회수 7855
-
김필한 교수, 패혈증 환자의 폐 손상 원인 밝혀
〈 김필한 교수 〉
우리 대학 의과학대학원/나노과학기술대학원 김필한 교수 연구팀이 3차원 생체현미경 기술을 통해 패혈증 폐에서 모세혈관과 혈액 내 순환 세포를 고해상도 촬영하는 데 성공했다.
연구팀은 패혈증 폐의 모세혈관 내부에서 백혈구의 일종인 호중구(好中球, neutrophil)들이 서로 응집하며 혈액 미세순환의 저해를 유발하고, 나아가 피가 통하지 않는 사강(死腔, dead space)을 형성함을 규명했다.
연구팀은 이 현상이 패혈증 모델의 폐손상으로 이어지는 조직 저산소증 유발의 원인이 되며, 호중구 응집을 해소하면 미세순환이 개선되며 저산소증도 함께 호전됨을 증명했다.
박인원 박사(현 분당서울대학교병원 응급의학과)가 주도한 이번 연구결과는 의학 분야 국제 학술지 ‘유럽호흡기학회지(European Respiratory Journal)’에 3월 28일 자에 게재됐다.
폐는 호흡을 통해 생명 유지의 필수 작용인 산소와 이산화탄소 간 가스 교환을 하는 기관으로 이는 적혈구들이 순환하는 수많은 모세혈관으로 둘러싸인 폐포(肺胞)에서 이뤄진다.
폐포의 미세순환 관찰을 위해 연구자들이 지속적인 노력을 하고 있으나 호흡을 위해 항상 움직이는 폐 안의 모세혈관과 적혈구의 미세순환을 고해상도로 촬영하는 것은 매우 어려웠다.
연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 폐의 호흡 상태를 보존하면서 움직임을 최소화할 수 있는 영상 챔버를 새롭게 제작했다. 이를 통해 패혈증 동물모델의 폐에서 모세혈관 내부의 적혈구 순환 촬영에 성공했다.
이 과정에서 패혈증 모델의 폐에서 적혈구들이 순환하지 않는 공간인 사강이 증가하며 이곳에서 저산소증이 유발되는 것을 발견했다. 이는 혈액 내부의 호중구들이 모세혈관과 세동맥 내부에서 서로 응집하며 갇히는 현상으로 인해 발생함을 밝혔다. 갇힌 호중구들은 미세순환 저해, 활성산소의 다량 생산 등 패혈증 모델의 폐 조직 손상을 유발하는 것도 확인했다.
연구팀은 추가 연구를 통해 폐혈관 내부의 응집한 호중구가 전신을 순환하는 호중구에 비해 세포 간 부착에 관여하는 Mac-1 수용체(CD11b/CD18)가 높게 발현함을 증명했다. 이어 Mac-1 저해제를 패혈증 모델에 사용하여 호중구 응집으로 저해된 미세순환을 개선하고 저산소증의 호전과 폐부종 감소를 증명했다.
연구팀이 독자 개발한 최첨단 고해상도 3차원 생체현미경 기술은 살아있는 폐 안 세포들의 실시간 영상촬영이 가능해 패혈증을 포함한 여러 폐 질환의 연구에 다양하게 활용될 것으로 기대된다.
연구팀의 폐 미세순환 영상촬영 및 정밀 분석 기법은 향후 미세순환과 연관된 다양한 질환들의 연구뿐 아니라 새로운 진단기술 개발 및 치료제의 평가를 위한 원천기술로 활용될 것으로 보인다.
김 교수 연구팀의 3차원 생체현미경 기술은 KAIST 교원창업기업인 아이빔테크놀로지(IVIM Technology, Inc)를 통해 상용화돼 올인원 생체현미경 모델 ‘IVM-CM’과 ‘IVM-C’로 출시됐으며 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비로서 미래 글로벌 바이오헬스 시장에 핵심 장비로 활용될 예정이다.
김 교수는 “패혈증으로 인한 급성 폐손상 모델에서 폐 미세순환의 저해가 호중구로 인하여 발생하며, 이를 제어하면 미세순환 개선을 통해 저산소증 및 폐부종을 해소할 수 있어 패혈증 환자를 치료하는 새로운 전략이 될 수 있음을 새롭게 밝혀냈다.”고 말했다.
이번 연구는 의과학대학원 졸업생 박인원 박사가 1저자로 참여했고 유한재단 보건장학회, 교육부 글로벌박사펠로우쉽사업, 과학기술정보통신부의 글로벌프론티어사업과 이공분야기초연구사업, 그리고 보건복지부의 질환극복기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 초고속 레이저주사 3차원 생체현미경 시스템
그림2. 생체 내 폐 이미징 기술 개념도 및 사진
2019.04.01
조회수 22561
-
박용근 교수, 안경 없이 3차원 홀로그래픽 디스플레이 재생기술 개발
〈 박용근 교수 〉
우리 대학 물리학과 박용근 교수 연구팀이 안경 없이도 3차원 홀로그래픽 디스플레이를 재생할 수 있는 기술을 개발했다. 특히, 연구팀의 기술은 초박형 구조로 기존 디스플레이 생산 공정과 호환 가능하며, 대면적 광시야각을 확보해 3차원 디스플레이 기술을 한 단계 진보시켰다.
박종찬 박사(前 KAIST 물리학과 연구원, 現 미국 일리노이 대학교 연구원)가 1저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 21일 자 온라인판에 게재됐다.
특별한 안경 없이 실감 나는 3차원 영상을 재생할 수 있는 홀로그래픽 디스플레이는 오랫동안 꿈의 기술로 여겨져 왔다. 그러나 현재 기술로는 구현할 수 있는 3차원 영상은 크기가 매우 작고 시야각 또한 크게 제한돼 현실적으로 구현이 어렵다.
3차원 홀로그램을 만들기 위해서는 빛의 세기와 빛이 진행하는 방향 모두 정밀하게 변조해야 한다. 빛 진행 방향의 정밀한 변조는 공간광파면 조절기에 의해 이뤄진다.
이때 빛이 진행하는 방향을 넓은 각도에서 정밀하게 제어하기 위해서는 공간광파면 조절기가 많은 픽셀로 이뤄져야 한다. 하지만 현재의 공간광파면 조절기의 픽셀 개수는 실감 나는 3차원 영상을 만들기에 턱없이 부족하다. 즉 빛을 매우 한정된 각도 내에서만 변조할 수 있는 것이다.
이런 조건에서 현재의 기술로 만들 수 있는 3차원 영상은 크기는 약 1센티미터(cm), 시청 가능한 시야각은 약 3도 이내로 제한돼 사실상 실용화가 불가능하다.
오랫동안 과학자들은 실용적인 홀로그램을 만들기 위해 여러 개의 공간광파면 조절기를 합쳐서 이용하거나, 사람이 인식할 수 있는 속도보다 훨씬 빠른 속도로 다량의 홀로그램 이미지들을 조합해 3차원 이미지를 만들었다. 하지만 이러한 방식은 복잡한 시스템을 뒷받침할 수 있는 연구실 환경에서만 구현됐다.
연구팀은 복잡한 광학계를 구성하는 대신 LCD패널과 비주기적으로 설계된 박막을 추가함으로써 기존 방식에 비해 성능이 크게 향상된 3차원 영상을 개발했다. 박막은 비주기적으로 배열된 수많은 구멍(핀홀)으로 구성되는데 핀홀은 빛을 넓은 각도로 퍼뜨리기 때문에 형성된 3차원 영상을 넓은 각도에서 볼 수 있다.
연구팀은 이론에 따라 설계된 박막을 기존 디스플레이의 LCD패널에 부착했고, 실험을 통해 약 3cm×3cm의 화면에서 약 30도의 시야각을 가지는 3차원 홀로그램 영상을 구현하는 데 성공했다.
이는 기존의 Full HD 홀로그래픽 디스플레이로 표현할 수 있는 공간대역폭 보다 약 400배 이상 향상된 결과이다. 또한 3가지 색(적색, 녹색, 청색)을 나타내며 60Hz로 작동하는 동적 홀로그램 역시 구현했다.
박용근 교수 연구팀이 지난 2016년 Nature Photonics지에 보고했던 기술은 산란을 이용해 홀로그래픽 디스플레이 품질을 향상시켰지만, 복잡한 계산과 큰 부피의 장비가 필요했었다. 이후 지속적인 기술 개발을 통해 본 연구에서는 일반 LCD 패널에 비주기적인 박막만 추가하면 제작할 수 있기 때문에, 기존 제조공정에 한 단계를 추가함으로써 상용화에 적합한 기술로 기대된다.
1 저자인 박종찬 박사는 “홀로그래픽 디스플레이의 상용화를 위해서는 넓은 시야각과 큰 영상 크기뿐 아니라 소형 폼팩터를 유지해야 한다. 이번 연구에서는 평면형 디스플레이에서 대면적 광시야각 홀로그래픽 디스플레이를 구현했다”라며 “스마트폰이나 태블릿 등 휴대용 기기에서 홀로그래픽 디스플레이를 구현하는 기반기술이 될 것으로 기대한다”라고 말했다.
□ 그림 설명
그림1. 실제 구현된 3차원 홀로그래픽 디스플레이와 전자현미경 이미지
그림2. 60 Hz로 동작하는 3차원 동적 컬러 홀로그램
2019.03.25
조회수 14563
-
박효훈 교수, 초소형 3차원 영상 센서의 핵심기술 개발
〈 (왼쪽부터) 나노종합기술원 유종범 연구원, 김성환 박사과정, 박효훈 교수 〉
우리 대학 전기및전자공학부 박효훈 교수 연구팀이 나노종합기술원과의 공동 연구를 통해 3차원 영상 센서의 핵심 기술인 실리콘 기반 광위상배열(optical phased array, OPA) 칩을 개발했다.
김성환 박사과정과 나노종합기술원 유종범 박사가 주도한 이번 연구결과는 국제 학술지 ‘옵틱스 레터스(Optics Letters)’ 1월 15일자 온라인 판에 게재됐다.
3차원 영상 센서는 사진 등의 2차원 이미지에 입체감을 주는 거리정보를 추가해 3차원 이미지로 인식하는 센서이다. 사물의 정확한 거리정보가 필요한 자율주행 자동차, 드론, 로봇, 안면인식이 사용되는 스마트폰 등 다양한 전자기기에서 눈의 역할을 하는 핵심부품이다.
다수의 자동차, 드론 회사들이 레이저 빛을 이용한 3차원 영상 센서인 라이다(light detection and ranging, LiDAR) 개발에 주력하고 있다. 그러나 이 방식은 2차원 영상 센서로 3차원 스캐닝을 하는 기계적 방식을 사용하기 때문에 주먹 정도의 큰 크기를 가지며 고장 가능성도 크다.
광위상배열(Optical Phased Array, OPA)은 전기적으로 빛의 방향을 조절할 수 있어 라이다의 차세대 구조로 주목받고 있다. 실리콘 기반의 광위상배열은 크기가 작고 내구성이 높으며 기존의 반도체 칩을 제작하는 설비를 활용해 만들 수 있어 많은 연구가 활발히 진행되고 있다.
하지만 기존의 광위상배열은 빛 방향을 조절하는 방법에 문제가 있다. 수평 방향 조절은 전기-광학식 위상변조기를 이용해 넓은 범위의 스캐닝이 가능하지만, 수직 방향 조절은 레이저 빛의 파장을 바꿔줘야 하는 기술적 난제가 있다.
즉, 빛의 파장을 바꾸면 실리콘 광소자의 특성이 달라져 신뢰성 있는 방향조절이 어렵고 또한 파장을 조절할 수 있는 레이저를 실리콘 기반의 칩에 집적시키기가 어렵기 때문이다. 따라서 방사되는 빛을 수직 및 수평 방향으로 쉽게 조절할 수 있는 새로운 구조를 만드는 것이 중요하다.
연구팀은 파장 변조 광원을 사용해야 하는 기존의 광위상배열을 발전시켜 단일파장 광원으로 넓은 범위의 2차원 스캐닝이 가능한 초소형, 저전력 광위상배열 칩을 개발했다.
연구팀이 반도체 공정을 통해 광위상배열 구조로 제작한 이번 센서는 잠자리 눈 정도의 크기로 작게 제작할 수 있어 3차원 영상 센서를 소형화시킬 수 있다.
연구팀은 광위상배열이 3차원 영상 센서의 기능뿐 아니라 획득한 3차원 영상 데이터를 원하는 방향으로 무선전송하는 기능도 수행 가능해 고화질, 대용량의 영상정보를 전자기기 간 자유롭게 통신할 수 있다고 밝혔다.
김성환 박사과정은 “파장 변조를 이용한 2차원 스캐닝은 파장 변조가 가능한 광원의 집적이 매우 어려웠기 때문에 이번 연구를 통해 광위상배열의 상용화에 큰 도움이 될 것으로 기대한다”라고 말했다.
유종범 박사는 “3차원 영상 센서를 스마트폰에 장착해 얼굴인식 및 증강현실 서비스 등에 지원할 예정이다”라며 “공정 플랫폼을 발전시켜 3차원 반도체 영상 센서 핵심 기술의 국산화에 노력하겠다”라고 말했다.
□ 그림 설명
그림1. 제작된 초소형 광위상배열 칩
그림2. 3차원 영상센서 핵심기술인 광위상배열 칩
2019.01.22
조회수 13210
-
스티브 박 교수, 김정 교수, 3차원 표면 코팅 가능한 로봇피부 개발
〈(왼쪽부터) 오진원 석사과정, 스티브박 교수, 양준창 박사과정 〉
우리 대학 신소재공학과 스티브 박 교수, 기계공학과 김정 교수 공동 연구팀이 3차원 표면에 코팅이 가능하며 자극을 구분할 수 있는 로봇피부를 개발했다.
오진원 석사과정, 양준창 박사과정이 공동 1저자, 박현규 석사과정이 참여한 이번 연구는 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 8월 28자 표지논문으로 게재됐다.
오늘날 로봇연구는 인간과 같은 기능을 가진 휴머노이드, 몸에 착용하는 헬스케어 장치 등 인간처럼 촉각을 구현하려는 연구가 활발히 진행되고 있다.
연구팀은 로봇의 복잡한 형상에 균일하게 코팅할 수 있는 로봇피부를 개발했다. 균일한 코팅은 로봇피부에 가해진 자극을 보다 정확히 측정할 수 있게 해주는 핵심 기술이다.
개발된 로봇피부 용액을 원하는 물체에 뿌린 뒤 굳히면 로봇피부가 형성된다. 매우 간편한 용액공정을 통해 제작하므로 저비용으로 대면적 및 대량생산이 가능하다. 또한 복잡한 형태를 지닌 로봇에도 적용할 수 있다.
특히 이 로봇피부는 인간과 같이 압력과 인장력을 구분해낸다. 수직 압력과 마찰에 대해 로봇피부의 내부구조가 각각 다르게 변형되기 때문에 이들을 구분할 수 있다.
또한 의료영상 기법 중 하나인 전기임피던스영상(EIT) 기술을 이용함으로써 복잡한 전기 배선 없이 로봇피부에 마찰이 가해지는 곳을 정확히 측정했다.
스티브 박 교수는 “개발된 로봇피부는 저비용으로 대량생산이 가능하며, 복잡한 3차원 표면에도 손쉽게 코팅이 가능하다”며, ”로봇피부의 상용화에 한 걸음 가까워질 수 있는 원천기술이다”라고 말했다.
이번 연구는 과학기술정보통신부·한국연구재단 기초연구사업(신진연구) 지원으로 수행됐다.
□ 그림 설명
그림1. 3차원 표면 코팅이 가능한 로봇피부 모식도 (ACS 나노 8월호 표지)
그림2. 전기임피던스영상법을 활용한 다양한 자극 측정
그림3. 다양한 코팅법을 활용한 로봇피부의 제작 및 로봇피부 신호 확인
2018.09.13
조회수 16806