본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B3%A0%EB%B6%84%EC%9E%90
최신순
조회순
다양한 바이러스 감염병을 쉽고 빠르게 찾아내는 만능 진단기술 개발
우리 연구진이 감염된 세포의 용해액만으로도 바이러스의 존재 여부를 핵산 증폭 없이 판독이 가능한 신기술을 개발했다. 이 기술은 바이러스의 특이적으로 존재한다고 알려진 ‘이중나선 RNA(이하 dsRNA)’검출을 기반으로 한다. 이 기술이 실용화되면 현재의 유전자 증폭(PCR) 검사와는 달리 시료 준비나 핵산 증폭, RNA 핵산 서열 정보가 필요 없어 각종 바이러스 감염병이나 신·변종 바이러스를 쉽고 빠르게 진단하는 기술이나 키트(Kit) 등을 개발하는 데 큰 도움이 될 것으로 기대된다. 우리 대학 생명화학공학과 리섕·김유식 교수 공동연구팀은 바이러스의 특징을 이용해 다양한 종류의 바이러스를 검출할 수 있는 만능 진단기술을 개발했다고 28일 밝혔다. 생명화학공학과 박사과정에 재학 중인 구자영, 김수라 학생이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `바이오마크로몰레큘스(Biomacromolecules' 4월 9일 字 온라인 판에 게재됐다. (논문명: Reactive Polymer Targeting dsRNA as Universal Virus Detection Platform with Enhanced Sensitivity). RNA(리보핵산)는 일반적으로 DNA(디옥시리보핵산)가 가진 유전정보를 운반해 단백질을 생산하게 한다. 그러나 단백질을 만들지 않는 다양한 `비번역 RNA(non-coding RNA)'가 존재하는데 이들은 세포 내 신호전달, 유전자 발현 조절, 그리고 RNA 효소적 작용 등의 다양한 역할을 맡는다. 이러한 비번역 RNA들에 상보적인 핵산 서열을 가지는 RNA가 결합해 형성된 `dsRNA'는 특히 바이러스에서 특이적으로 많이 발견된다. dsRNA는 DNA 바이러스의 전사 또는 RNA 바이러스의 복제 과정에서 생산되는데, 인간 세포는 바이러스 dsRNA를 외부 물질로 인지해 면역반응을 일으킨다. 특이하게도 바이러스 dsRNA를 인지하는 인간의 선천성 면역반응시스템은 핵산 서열 정보를 무시한 채 dsRNA의 길이나 말단 구조와 같은 형태적 특징을 이용해 dsRNA와 반응한다. 인간 면역체계가 다양한 종류의 바이러스에 대처를 가능케 하는 이유다. 공동연구팀은 이런 인간 면역체계의 원리에 착안해 바이러스의 특징인 길이가 긴 dsRNA를 검출할 수 있는 기판 제작을 통해 다양한 종류의 바이러스를 핵산 서열 정보 없이 검출할 수 있도록 했다. 실리카 기판 표면에는 펜타 플루오르 페닐 아크릴레이트(PPFPA) 반응성 고분자를 코팅해 높은 효율로 빠르고 간편하게 dsRNA를 인지하는 항체를 고정시켰다. 이렇게 개발된 기판에서 면역반응을 일으키는 76bp(base pair, 염기 쌍 개수를 의미하는 길이 단위) 이상의 긴 길이를 가지는 dsRNA를 검출할 수 있었다. 또한, 감염이 되지 않은 세포에서 발견되는 단일 가닥 RNA와 함께 19bp의 짧은 dsRNA는 전혀 검출되지 않아 바이러스 감염 진단용으로 활용 가능성을 확인했다. 연구팀은 이어 바이러스 dsRNA의 긴 길이를 활용한 2단계 검출 방법을 찾기 위해 많은 도전 끝에 특이도 및 민감도가 향상된 바이러스 dsRNA 검출기술을 개발하는 데 성공했다. 연구팀은 이와 함께 시료 준비과정도 대폭 간편화시켜 세포에서 RNA를 분리하거나 정제 작업 없이 감염된 세포의 용해액만을 이용해 바이러스 dsRNA를 검출할 수 있는 기술을 개발했다. 이 기술을 A형과 C형 간염 바이러스에 감염된 세포에 적용한 결과, 바이러스 dsRNA의 존재 여부를 핵산 증폭 없이 판독하는 데에도 성공했다. KAIST 생명화학공학과 리섕 교수는 "이번 연구에서는 A형 간염과 C형 간염 dsRNA만을 검출했지만, 바이러스 dsRNA는 다양한 종류의 바이러스에서 발견된다ˮ 면서 "이번에 개발한 dsRNA 검출기술은 다양한 바이러스에 적용 가능해 만능 감염병 진단기술로 발전될 수 있고, 특히 공항·학교 등 공공장소에서도 쉽고 빠르게 감염병을 검출할 수 있어 효과적인 방역대책을 마련하는데 유용할 것ˮ 이라고 말했다. 한편 이번 연구는 한국연구재단 신진연구자지원사업과 국방과학연구소 순수기초연구 용역사업에 지원을 받아 수행됐다.
2020.06.01
조회수 15476
계층형 다공성 2차원 탄소 나노시트 합성
생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 기술을 개발했다.연구팀의 합성기술은 다공성 2차원 탄소 소재의 기공 크기와 구조 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술로 2차전지, 촉매 분야에서 고용량 전극 소재로 활용될 것으로 기대된다. 김성섭 박사, 주미은 석사가 공동 1 저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국화학회지(Journal of the American Chemical Society, JACS)’ 2월 13일 자 온라인판에 게재됐다. (논문명: Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets) 기존의 다공성 2차원 탄소 소재의 합성은 대부분 그래핀 소재에 기공을 형성하는 방식에 의존하지만, 이는 기공의 크기와 구조를 효율적으로 제어할 수 없다는 한계가 있다. 이를 해결하기 위해서 2차원 나노시트를 주형으로 이용해 블록공중합체의 자기조립 방식을 시도했으나 추가적인 주형의 합성이 필수적이기 때문에 합성 과정이 복잡하고 두께의 조절이 쉽지 않다는 문제가 발생한다.따라서 기공의 크기 등 나노 구조의 제어가 가능하면서도 손쉬운 합성을 할 수 있는 다공성 2차원 탄소 나노시트 합성법 개발의 필요성이 커지고 있다. 이 교수 연구팀은 블록공중합체, 단일중합체 고분자 혼합물의 상 거동을 이용해 마이크로 기공과 메조 기공, 그리고 8.5nm의 두께를 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 데 성공했다. 서로 섞이지 않는 두 종류의 단일중합체의 계면 사이에서 블록공중합체와 무기 전구체가 자기조립을 통해서 다공성 구조를 형성하는 원리이다.이 합성 방법은 별도의 주형이 필요하지 않은 간단한 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대했다. 이를 이용해 연구팀은 계층형 다공성 탄소 나노시트를 차세대 전지인 칼륨이온전지(potassium-ion batteries)의 음극에 적용해 용량을 기존 흑연 소재의 8배 이상 높이는 결과를 얻었다. 연구팀의 합성기술은 블록공중합체의 분자량 및 고분자대비 질량을 조절해 손쉽게 나노구조(기공 크기, 구조, 두께)를 조절할 수 있어 맞춤형 나노소재로 활용할 수 있을 것으로 기대된다. 이진우 교수는 “기존 다공성 2차원 무기 소재 합성기술의 문제점을 고분자 블렌드 성질을 이용해 해결할 수 있음을 보여줬다”라며 “이는 고분자 물리학과 무기 소재 합성을 이어주는 중요한 연구가 되며 다양한 에너지 장치에 적용될 수 있을 것이다”라고 설명했다. 이번 연구는 과학기술정통부와 한국연구재단이 추진하는 C1가스리파이너리 사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업 및 미래소재디스커버리사업의 지원을 통해 수행됐다.
2020.03.20
조회수 18230
Tech Week 2019 개최
우리 대학이 연구자·창업자를 위해 그간 산발적으로 개최해오던 행사를 한데 묶어 11월 첫째 주를 `KAIST Tech Week'로 정하고 5일부터 7일까지 사흘간 대전 본원 학술문화관(E9)에서 첫 행사를 갖는다. ◆ 5일(화) 13:30~17:30 : 2019 과학기술원 기술이전 설명회 (학술문화관(E9) 5층 정근모홀·스카이라운지) 첫날인 5일에는 KAIST를 포함한 GIST·DGIST·UNIST 등 4대 과학기술원이 공동으로 `2019 과학기술원 기술이전 설명회'를 열고 일본 화이트리스트 배제에 대응할 소재·부품·장비 관련 10개의 우수기술을 소개한다. 4대 과학기술원이 공동으로 기술이전을 위한 발표와 상담을 진행하는 것은 이번이 처음이다. 행사 당일에는 연구자들이 직접 나서 15분간 기술을 소개하고 상담 데스크도 운영한다. 발표 기술에 관심 있는 기업은 홈페이지를 통해 사전 상담 예약도 가능하다.( https://forms.gle/22SKRt9YT2C63NV6A ) KAIST가 선보이는 기술은 ① 고품질 흑연 기반 그래핀 소재 및 부품 기술(김상욱 교수·신소재공학과), ② 높은 산소이온 이동성을 가지는 전해질 비스무트 칼슘 철 산화물(양찬호 교수·물리학과), ③ 수소 가스 센서(정희태 교수·생명화학공학과), ④ iCVD 공정을 이용한 다기능성 초고분자 박막 기술(임성갑 교수·생명화학공학과), ⑤ 비파괴 검사를 위한 레이저 위상 잠금 열화상 장치(손훈 교수·건설및환경공학과) 등 모두 5개다. 이 기술들은 디스플레이나 센서 등 전자부품의 소재로 각광을 받거나, 반도체 품질 향상을 꾀할 수 있는 우수기술로 꼽힌다. GIST는 신소재공학부 윤명한 교수가 2건의 기술을 발표한다. ⑥ 금속산화물 박막 재료의 심자외선 저온 광결정화 공정과 ⑦ 전도성 고분자 섬유의 습식 방사 기술이다. 이들 기술도 디스플레이나 전자·에너지·센서 분야에서 중요한 기술로 평가된다. DGIST에서는 ⑧ 소형 하이-토크(High-Torque)의 모터 어셈블리(이승열-장성우 박사·지능형로봇연구부)를 소개한다. 이 기술은 소형이지만 회전력이 강한 모터가 필요한 산업체에 도움을 줄 전망이다. 이밖에 UNIST에서는 ⑨ 이산화탄소 제거 및 수소와 전기 동시 생산 시스템(김건태 교수·에너지 및 화학공학부)과 ⑩ 폴더블 디바이스 전력량 밸런싱 방법(정지훈 교수·전기전자컴퓨터공학부)을 마련했다. 두 기술은 기후변화나 전력 소비 등에 대응할 유망기술이라는 점에서 눈길을 끈다. ◆ 6일(수) 10:30: 오픈 벤처 랩(Open Venture Lab) 성과발표회 (학술문화관(E9) 5층 스카이라운지) KAIST 오픈벤처랩(Open Venture Lab) 성과발표회는 6일 오전 10시 30분부터 학술문화관 5층 스카이라운지에서 열린다. KAIST 산학협력단 창업보육센터는 아이디어단계의 예비 창업팀 14개를 대상으로 창업기초 과정인 Pre-OVL 과정을 지난 4월부터 약 한 달간 운영해왔다. 이후, 전환평가를 통해 최종 선발된 8개의 예비 창업팀을 대상으로 본격적인 창업과정인 OVL 과정을 지난 7월부터 10월 말까지 진행하고 있다. 8개의 예비 창업팀은 비즈니스 모델 분석 및 개선을 위해 KAIST 산학협력 교수 멘토링과 KAIST 동문 스타트업 및 액셀러레이터의 전담 코칭을 받았다. 또한, 아이디어를 구현한 시제품 제작, 펀딩을 위한 시장분석 및 기업설명 영상제작, 투자유치 지원, 창업보육센터 입주 지원 등 KAIST가 보유한 다양한 창업지원 인프라를 활용해 짧은 기간 안에 아이디어 수준에서 기술 창업화 단계까지 완성시켰다. 이번 오픈벤처랩 성과발표회는 지난해 예비 창업팀 2개를 포함한 레드윗·락키·리드온·영윈스 등 10개 스타트업이 그동안의 성과를 발표하는 피칭세션과 창업지원금을 통해 제작한 시제품을 전시하는 부스 세션으로 나뉘어 진행될 예정이다. ◆ 7일(수) 10:30~18:30: 2019 KAIST Tech Day (학술문화관(E9) 5층 정근모홀 · 스카이라운지) 2019 KAIST Tech Day 행사는 스타트업 분야 전문가를 초청, 관련 핵심이슈와 최신 트렌드를 논의하는 `Institute for Startup KAIST 포럼(이하 ISK 포럼)'과 미래 핵심기술을 기반으로 창업한 KAIST 스타트업 8개 팀의 기술발표 행사인 `테크 데모' 피칭으로 구성된다. 1부 행사인 ISK 포럼에서는 2014년 SC제일은행 CISO(최고정보보호책임자)로 임명돼 정보보안 정책과 실행을 맡고 있는 1세대 정보보안 벤처기업 시큐어소프트 창업자 김홍선 부행장이 `스타트업이 기업으로 성장해가는 과정에서 발생하는 내외적 도전과제를 어떻게 극복하는 가'를 주제로 이야기를 풀어나간다. 이어 알리 이자디 나자파바(Ali Izadi-Najafabadi) 블룸버그 신에너지금융 지능형 차량연구실장이 모빌리티 이노베이션의 미래에 대해 설명하고 청중들과 의견을 교환한다. 2부 행사인 테크 데모에서는 8개의 KAIST 학생 창업팀이 사업 아이템과 관련 기술을 공개하고 부스 전시와 기업 네트워킹을 갖는 행사를 동시에 진행한다. 데모데이에 참가하는 8개 학생 창업팀은 블록체인·사물인터넷( IoT)·신재생에너지·온라인 플랫폼 등 미래 핵심기술을 기반으로 하는 신생 스타트업이다. ▲더카본스튜디오(전기자동차를 위한 차세대 에너지 저장 장치용 핵심소재), ▲셀렉트스타(인공지능을 위한 모바일 크라우드소싱 플랫폼), ▲클린에어스(다중이용시설에서 사용할 수 있는 공기정화장치), ▲브이플러스랩(AI를 활용한, 저비용 고효율 SW 자동 테스팅), ▲티이이웨어(TEE 보안기술 기반의 블록체인 및 클라우드), ▲클라썸(교사와 학생을 이어주는 실시간 소통 플랫폼), ▲디보션푸드(식물성 원재료 대체육 개발), ▲룩시드랩스(VR 환경에서 획득한 생체정보를 통해 사용자의 감정을 분석하는 머신러닝 모델)가 테크 데모 행사에서 창업 우수사례를 소개하는 주인공 자리를 차지했다. KAIST Tech Week 행사를 총괄 기획한 박현욱 연구부총장은 "이제 대학의 역할은 우수한 교육과 경쟁력 있는 연구뿐 아니라 연구결과의 사업화까지 확장되고 있다ˮ며 "이런 문화를 확산하는 데 KAIST가 앞장설 것ˮ이라고 강조했다.
2019.10.31
조회수 19212
전상용, 이대엽, 임성갑 교수, 암 줄기세포 제작 원천기술 개발
우리 대학 생명과학과 전상용, 이대엽 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 특수 고분자박막을 이용해 3차원 암 줄기세포 스페로이드(spheroids)를 손쉽게 제작할 수 있는 세포배양 플랫폼을 개발했다. 연구팀은 ‘개시제를 이용한 화학 기상 증착법’을 이용한 고분자 박막을 형성해 암 줄기세포를 제작하는 데 성공했다. 이번 연구를 통해 암 줄기세포 기초 연구 및 약물 개발 플랫폼의 원천 기술을 제공할 수 있을 것으로 기대된다. 최민석, 최윤정 박사, 유승정 박사과정이 공동 1 저자로 참여한 이번 연구는 미국 암학회(AACR) 대표 국제학술지인‘암 연구(Cancer Research)’ 10월 24일자 온라인 판에 게재됐다.(논문명 : Polymer thin film-induced tumor spheroids acquire cancer stem cell-like properties) 암 줄기세포는 항암제에 대한 내재적 저항성을 가져 암의 전이와 재발에 깊이 관여하고 있다. 그러나 종양 안에 극히 일부 존재하기 때문에 지금까지는 다양한 암 줄기세포의 대량 확보가 어려워 암 연구 및 약물 개발에 제약이 있었다. 생체 내에서 암은 3차원 조직 덩어리 형태로 존재하므로 암 줄기세포를 스페로이드 형태로 배양하는 연구가 필요하다. 연구팀은 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용해 세포배양 기판 위에 특정 고분자 (pV4D4)박막을 형성했다. 그 위에 다양한 암세포를 배양한 결과 암세포들이 고분자박막 표면으로부터 자극을 받아 서로 뭉치면서 3차원 스페로이드 형태를 만들었고, 이와 동시에 항암제에 대한 저항성을 가진 종양 암 줄기세포로 변화하는 것을 확인했다. 연구팀은 이러한 ‘표면자극 유도 암 줄기세포(Surface stimuli-induced cancer stem cell-like cell)’를 고효율로 손쉽게 대량 배양하는 데 성공했다. 연구팀은 이번 연구에서 특정 고분자 박막에서 배양된 표면 자극 유도 암 줄기세포 스페로이드가 약 24시간 안에 형성되며 분석결과 암 줄기세포 관련 유전자의 양이 배양시간에 따라 증가함을 발견했다. 연구팀이 개발한 플랫폼을 통해 형성된 암 줄기세포 스페로이드는 실제 항암제를 처리했을 때 뛰어난 약물저항성을 지니고 있음을 확인했다. 또한 종양 동물모델에서 비교그룹에서는 보이지 않았던 다른 장기로 암이 전이되는 것을 확인했다. 연구팀은 전체염기서열분석(Whole-genome sequencing)을 통해 표면 자극 유도 암 줄기세포와 실제 암 환자 암 줄기세포와의 유사성을 확인했다. 전상용 교수는 “이미 시판되고 있는 다양한 종류의 암 세포주들 뿐만 아니라 환자에서 유래한 생체 내 환경과 유사한 3차원 스페로이드 형태로 양질의 암 줄기세포를 고효율로 손쉽게 대량 배양할 수 있는 원천 기술을 개발했다”라며 “향후 암 줄기세포 기초 연구 및 약물 개발의 패러다임을 바꿀 수 있을 것으로 기대한다”라고 말했다. 또한 “나아가 암 줄기세포 제작용 플랫폼 소재에 대한 원천 기술 확보를 통해 거대한 암 관련 의료시장에서의 경제적인 부가가치 창출도 가능할 것으로 기대한다”라고 말했다. 이번 연구는 삼성전자 미래기술육성재단의 지원을 받아 수행됐다. 재단에서는 이 연구의 중요성을 높이 평가해 올해 9월부터 후속 과제 사업을 통해 3년 연장 지원을 결정했다. □ 그림 설명 그림1. 3차원 암줄기세포 스페로이드 형성 모식도 그림2. 형성된 암줄기세포를 이용하여 약물 저항성 확인
2018.11.28
조회수 13868
스티브 박 교수, 유기반도체 결정크기 10배 성장 기술 개발
〈 이정찬 석사과정, 스티브 박 교수, 김진오 박사과정 〉 우리 대학 신소재공학과 스티브 박 교수 연구팀이 유기반도체 결정의 크기를 성장시키고 제어할 수 있는 기술을 개발했다. 이는 무기고분자 재료를 이용해 마이크로미터 크기 수준의 구조물을 제작한 뒤 용액전단법이라는 공정과 결합하는 기술로, 용액 기반의 프린팅 공정에서 유기반도체 결정의 성장 과정을 미세하게 제어함으로써 정밀하고 균일한 대면적 크기의 유기반도체 박막 제조의 기반 기술이 될 것으로 기대된다. 김진오 박사과정, 이정찬 석사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 16일자 표지논문에 선정됐다. (논문명 : Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size, 필러 크기에 따른 유기반도체 결정 크기 성장 가능한 무기고분자 마이크로 필러 기반 용액전단법) 유기반도체는 용액을 이용한 프린팅 공정이 가능하다는 점에서 큰 주목을 받고 있다. 저가 및 대면적 제작이 가능하고 유연한 전자 소자 제작이 가능하기 때문에 다양한 연구가 지속되고 있다. 유기반도체 성능의 지표인 이동도(Mobility)는 유기반도체의 결정성, 결정의 성장방향, 결정의 크기 등의 영향을 받는다. 유기반도체의 결정성이나 결정방향을 제어하기 위한 연구는 많이 발전됐지만 결정 크기를 성장시킬 수 있는 기술은 부족한 상황이다. 최근에는 유기반도체의 균일한 박막을 만들기 위한 기술이 발전되고 있는데 잉크젯 프린팅, 딥 코팅, 그리고 용액전단법이 대표적인 기술이다. 그러나 기존의 프린팅 공정은 용액의 흐름을 적절히 통제하지 못한 상태에서 용매의 증발이 무작위로 발생하기 때문에 결정 크기가 큰 유기반도체를 제작하는 데 어려움이 있다. 연구팀은 문제 해결을 위해 유기용매에 내성을 갖는 무기 고분자 재료를 이용해 다양한 형태의 전단판을 제작한 후 이를 용액전단 기술에 결합했다.(용액전단법: 기판과 전단판 사이에 용액을 주입하고 일정 속도로 전단판을 이동시켜 한 방향으로 정렬된 균일한 유기반도체 박막 제작이 가능한 프린팅 기술) 무기 고분자 재료는 유연하고 유기용매에 대한 내성을 갖고 있기 때문에 유기반도체를 이용한 프린팅 공정에 적합하다. 또한 기존의 실리콘 재료 기반의 전단판 제조 공정을 간단한 소프트리소그래피 공정으로 대체할 수 있다. 연구팀은 일렬 형태로 배열된 사각형 모양의 마이크로미터 크기 구조물을 이용해 용액이 균일한 굴곡을 가지며 기판에 맺히도록 조절했다. 이를 통해 용매의 증발 속도를 조절해 핵 생성이 일어나는 지점을 정밀하게 통제했다. 여기서 마이크로 구조물의 크기를 변화시키며 유기반도체 결정의 크기를 성장시키는 데 성공했고, 그 결과로 반도체 소자의 성능이 함께 향상됨을 확인했다. 스티브 박 교수는 “무기고분자 재료를 결합한 용액전단법은 프린팅 공정에서 정밀한 제어가 가능하다”며 “유기반도체 뿐 아니라 다른 재료를 이용한 균일 박막 제조가 가능한 원천 기술을 확보했다는 의미를 갖는다”고 말했다. 이번 연구는 한국산업기술평가관리원이 추진하는 센서산업고도화 전문기술개발사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 무기고분자를 이용한 마이크로 필러 구조의 용액전단법(어드밴스드 머티리얼즈 7월호 표지)
2018.08.03
조회수 13271
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 23675
최성율 교수, 이차원 소재 이용한 초저전력 유연메모리 개발
〈 최성율 교수, 장병철 박사과정 〉 우리 대학 전기및전자공학부 최성율 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 2차원 소재를 이용한 고집적, 초저전력 비휘발성 유연 메모리 기술을 개발했다. 연구팀은 원자층 두께로 매우 얇은 이황화몰리브덴 채널 소재와 고성능의 고분자 절연막 소재를 이용해 이 기술을 개발했다. 우명훈 석사(현 삼성전자 연구원)와 장병철 박사과정 학생이 공동 1저자로 참여한 이번 연구는 국제적인 재료분야 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 11월 17일자 표지 논문으로 게재됐다. 사물인터넷, 인공지능, 클라우드 서버 기술 등의 등장으로 인해 메모리 중심의 컴퓨팅 전환과 함께 웨어러블 기기 산업의 수요 증가로 고집적, 초저전력 비휘발성 유연 메모리에 대한 필요성이 커지고 있다. 특히 원자층 두께의 매우 얇은 이황화몰리브덴 반도체 소재는 최근 포스트 실리콘 소재로 주목받고 있다. 이는 얇은 두께로 인해 기존 실리콘 소자에서 나타나는 단채널 효과를 억제해 고집적도 및 전력 소모 측면에서 장점을 갖기 때문이다. 또한 얇은 두께로 인해 유연한 특성을 가져 웨어러블 전자소자로의 응용이 가능하다는 이점이 있다. 하지만 이황화몰리브덴 반도체 소재는 불포화 결합(dangling bond)을 갖지 않는 표면 특성으로 인해 기존의 원자층 증착 장비로는 얇은 절연막을 균일하고 견고하게 증착하기 어렵다는 한계가 있다. 게다가 현재의 액상 공정으로는 저유전율 고분자 절연막을 10나노미터 이하로 균일하게 대면적으로 증착하기가 어려워 저전압 구동이 불가능하고 포토리소그래피 공정과 호환이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상증착법(initiated chemical vapor deposition, iCVD)’을 이용해 고성능의 고분자 절연막을 개발해 해결했다. 연구팀은 iCVD 공정을 이용해 이황화몰리브덴 반도체 소재 위에 10나노미터 두께의 터널링 고분자 절연막이 균일하고 견고하게 증착됨을 확인했다. 연구팀은 기존의 이황화몰리브덴 반도체 메모리 소자가 20V 이상의 전압으로 구동되는 반면 이번에 제작한 소자는 10V 부근의 저전압으로 구동됨을 확인했다. 최 교수는 “인공지능, 사물인터넷 등 4차산업혁명의 근간인 반도체 소자기술은 기존 메모리 소자를 뛰어넘는 저전력성과 유연성 등의 기능을 갖춰야 한다”며 “이번 기술은 이를 해결할 수 있는 소재, 공정, 소자 원천 기술을 개발했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업, 미래소재 디스커버리 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. Advanced Functional Materials 표지 그림2. 제작된 비휘발성 메모리 소자의 개념도 및 소자 단면 고해상도 투과전자현미경 이미지
2017.12.18
조회수 23571
김상욱 교수, 카메라 플래시로 7나노미터 반도체 패턴 제작 기술 개발
〈 김상욱 교수, 진형민 연구원 〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 카메라의 플래시를 이용해 반도체를 제작하는 기술을 개발했다. 이 기술은 반도체용 7나노미터 패턴 기법으로 한 번의 플래시를 조사하는 것만으로 대면적에서 초미세 패턴을 제작할 수 있다. 향후 고효율, 고집적 반도체 소자 제작 등에 활용 가능할 것으로 기대된다. 진형민 연구원, 박대용 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 8월 21일자 온라인 판에 게재됐다. 4차 산업혁명의 주요 요소인 인공지능, 사물인터넷, 빅데이터 등의 기술에는 고용량, 고성능 반도체 소자가 핵심적으로 필요하다. 이러한 차세대 고집적 반도체 소자를 만들기 위해서는 패턴을 매우 작게 형성하는 리소그래피(Lithography) 기술의 개발이 필수적이다. 현재 관련 업계에서는 작은 패턴 제작에 주로 광 리소그래피(Photolithograph) 기술을 이용하고 있다. 하지만 이 기술은 10나노미터 이하의 패턴을 형성하기엔 한계가 있다. 고분자를 이용한 분자조립 패턴 기술은 공정비용이 저렴하고 10나노미터 이하 패턴 형성이 가능해 광 리소그래피를 대신할 차세대 기술로 각광받고 있다. 그러나 고온 열처리나 유독성 증기 처리에 시간이 많이 소요되기 때문에 대량 생산이 어려워 상용화에 한계가 있다. 연구팀은 고분자 분자조립 패턴 기술의 문제 해결을 위해 순간적으로 강한 빛을 내는 카메라 플래시를 활용했다. 플래시 빛을 이용하면 15 밀리 초(1밀리 초 : 천분의 1초) 내에 7나노미터의 반도체 패턴을 구현할 수 있고, 대면적에서 수십 밀리 초의 짧은 시간 내에 수 백도의 고온을 낼 수 있다. 연구팀은 이 기술을 고분자 분자 조립에 응용해 단 한 번의 플래시를 조사하는 것으로 분자 조립 패턴을 형성할 수 있음을 증명했다. 또한 연구팀은 고온 열처리 공정이 불가능한 고분자 유연 기판에도 적용이 가능함을 확인했다. 이를 통해 차세대 유연 반도체 제작에 응용할 수 있을 것으로 보인다. 연구팀은 카메라 플래시 광열 공정을 분자 조립 기술에 도입해 분자 조립 반도체기술의 실현을 앞당길 수 있는 고효율의 기술이라고 밝혔다. 연구를 주도한 김상욱 교수는 “분자조립 반도체 기술은 그 잠재성에도 불구하고 공정효율 제고가 큰 숙제로 남아 있었다”며 “이번 기술은 분자조립기반 반도체의 실용화에 획기적 해결책이 될 것이다”고 말했다. 신소재공학과 이건재 교수, 부산대학교 재료공학과 김광호 교수와의 공동으로 진행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 플래시 광을 이용한 반도체 패턴 형성 사진2. 플래시 광을 이용한 분자조립 패턴 형성 모식도 사진3. 다양한 가이드 패턴을 이용한 자기조립 패턴 제어와 고분자 유연기판에서의 플래시 자기조립 패턴 형성
2017.09.13
조회수 20664
화학과, 효성과 올 가을학기부터 산학강좌 운영
우리대학 화학과(학과장 이지오 교수)는 올 가을학기부터 효성기술원 임원 및 전문가들이 화학과 석·박사 대학원생을 대상으로 고분자 화학산업의 현황과 전망 등을 주요내용으로 하는 '고분자화학 특강' 산학강좌를 운영 중이다. 효성은 이번 산학강좌를 통해 학생들이 차세대 유망소재 기술 및 시장에 대한 이해도를 높이고, 최신 기술 및 트렌드에 대한 기업의 시각을 접할 수 있도록 적극 노력하는 한편 채용관련 소개도 함께 진행한다. 효성은 특히 산학강좌 기간 중에 자사가 세계시장에서 1위를 점하고 있는 스판덱스와 타이어코드를 비롯, 신성장동력 사업으로 육성하고 있는 첨단소재인 TAC필름, 수처리막(멤브레인), 탄소섬유에 대한 최신기술 등을 집중소개할 계획이라고 밝혔다. 효성은 또 이번 산학강좌를 수강한 화학과 석·박사학생들을 자사가 필요로 하는 전문지식 및 연구개발과 실무지식을 갖춘 인재로 키워 이중 일부를 산학장학생으로 채용할 방침이다. 장두원 효성기술원장은 "기업의 최신 기술동향 및 연구사례를 우수대학과 공유해 실무를 가르치며 첨단소재 산업에 필요한 R&D 인재를 양성하는데 힘쓸 것"이라고 강조했다.
2017.09.07
조회수 12574
김희탁, 김신현 교수, 물과 기름에 젖지 않는 대면적 표면 개발
〈 최재호 박사과정, 김희탁 교수, 김신현 교수 〉 우리 대학 생명화학공학과 김희탁, 김신현 교수 공동 연구팀이 물과 기름 등에 젖지 않는 저렴한 대면적 표면을 개발했다. 이 기술은 아조고분자의 광유체화 현상을 이용해 초발수성, 초발유성(Super-omniphobic: 물과 기름 등에 젖지 않는 특성) 막을 개발한 것으로 얼룩 및 부식 방지막 개발 등에 다양하게 응용될 것으로 기대된다. 최재호 박사과정이 1저자로 참여한 이번 연구 결과는 나노기술분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 8월호에 게재됐다. 이중요각구조체는 버섯 모양의 구조체를 가진 표면을 뜻한다. 이를 통해 물과 기름처럼 표면에너지가 낮은 액체에 대해 젖지 않는 초발수성, 초발유성(Super-omniphobic)을 갖는다. 하지만 이중요각구조체는 매우 정교한 구조이기 때문에 기존 제작 방식은 여러 단계의 복잡한 공정을 거쳐 야 한다는 단점과 더불어 유연하지 않고 비싼 실리콘 물질 정도만을 제작할 수 있다는 한계가 있었다. 연구팀은 다른 방식으로 이중요각구조체를 제작하기 위해 아조고분자의 독특한 광학적 특성인 국부적 광유체화 현상에 주목했다. 광유체화 현상은 아조고분자가 빛을 받으면 마치 액체처럼 유체화가 되는 현상을 말한다. 이 유체화는 빛을 흡수하는 아조고분자 표면의 얇은 층에서만 부분적으로 일어난다. 연구팀은 이 광유체화 현상을 아조고분자 원기둥 구조에서 일어나게 해 원기둥 윗부분 표면만 선택적으로 흘러내리는 방식으로 버섯 모양의 이중요각구조체를 형성했다. 연구팀이 제작한 구조체의 표면은 매우 낮은 표면에너지를 갖는 액체, 즉 핵산과 같이 표면에 금방 스며들려는 특성을 갖는 액체에도 뛰어난 초발수성, 초발유성을 갖는다. 이 특성은 표면 물질이 고분자 기반이기 때문에 구부러진 상태에서도 유지될 수 있다. 또한 연구팀의 구조체 제작은 아조고분자 원기둥 구조의 틀을 잡고 빛을 조사하는 정도의 간단한 과정만 거치기 때문에 경제적, 실용적으로 큰 장점이 있다. 김희탁 교수는 “이번 연구에서 제안한 새로운 이중요각구조 제작방식을 통해 뛰어난 초발수성, 초발유성 특성을 갖는 표면을 쉽게 제작할 수 있을 것이다”며 “임의의 굴곡을 갖는 표면의 초발수, 초발유성 특성을 부여할 수 있어 생물오손방지 튜브, 얼룩부식 방지 표면 등 다양하게 응용 가능할 것이다”고 말했다. 김신현 교수는 “이번 연구에서 설계한 이중요각구조는 피부로 호흡하며 땅 속에 서식하는 곤충인 톡토기(springtail)의 피부 구조를 모방한 것으로 인간은 자연으로부터 배우고 공학적으로 창조한다는 사실을 다시 한 번 깨달았다”고 말했다. 이번 연구는 KAIST의 엔드 런(End-Run) 프로그램의 지원을 받아 수행됐다. 그림1. 버섯모양의 구조제작 모식도 그림2. 버섯모양 구조의 SEM 이미지 그림3. 다양한 액체들에 대해 superomniphobic 특성을 나타냄을 보여주는 이미지
2017.09.06
조회수 16255
최경철 교수, 초고유연성 의류형 디스플레이 개발
〈 최 승 엽 박사과정 〉 우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물과 유기발광다이오드(OLED)를 융합해 높은 유연성을 갖는 최고 효율의 의류형 디스플레이 기술을 개발했다. 최승엽 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’ 7월 21자 온라인 판에 게재됐다. 디스플레이는 차세대 스마트 제품 외형의 대부분을 차지할 정도로 그 중요성이 커지고 있다. 더불어 사물인터넷과 웨어러블 기술의 비중이 늘어나면서 의류 형태의 웨어러블 디스플레이 기술도 주목받고 있다. 2011년 직물 위에 발광체를 형성한 연구 이후 실제 옷감 위에 디스플레이를 구현하기 위한 노력이 계속됐다. 하지만 직물 특유의 거친 표면과 유연한 특성 때문에 상용화 수준의 성능을 보여주지 못했다. 최 교수 연구팀은 의류 형태의 웨어러블 디스플레이 구현을 위해 직물(fabric)형과 섬유(fiber)형 두 가지 방식으로 연구를 진행했다. 연구팀은 2015년에 열접착 평탄화 기술을 통해 거친 직물 위에서 수백 나노미터 두께의 유기발광소자를 동작하는 데 성공했다. 2016년에는 용액 속 실을 균일한 속도로 뽑는 딥 코팅(dip-coating) 기술을 통해 얇은 섬유 위에서도 높은 휘도를 갖는 고분자발광소자를 개발했다. 위와 같은 연구를 바탕으로 최 교수 연구팀은 옷감의 유연성을 유지하면서 높은 휘도와 효율 특성을 갖는 직물형 유기발광소자를 구현했다. 최고 수준의 전기 광학적 특성을 갖는 이 소자는 자체 개발한 유무기 복합 봉지(encapsulation) 기술을 통해 장기적 수명이 검증됐고, 굴곡 반경 2mm의 접히는 환경에서도 유기발광소자가 동작한다. 연구팀은 최고 수준의 휘도와 효율을 갖는 의류 형태의 유기발광 다이오드를 구현했다는 의의가 있으며 보고된 직물 기반의 발광소자 중 가장 유연하다고 밝혔다. 이번 연구를 통해 의류형 발광소자의 기계적 특성에 대한 심층적 분석이 더해져 직물 기반 전자산업 발전에 도움이 될 수 있을 것으로 기대된다. 최승엽 박사과정은 “직물 특유의 엮이는 구조와 빈 공간은 유기발광소자에 가해지는 기계적 스트레스를 크게 낮추는 역할을 한다”며 “직물을 기판으로 사용해 디스플레이를 구현하면 유연하며 구겨지는 화면을 볼 수 있다”고 말했다. 최경철 교수는 “우리가 매일 입는 옷 위에서 디스플레이를 보는 것이 먼 미래가 아니다”며 “앞으로 빛이 나는 옷은 패션, 이-텍스타일(E-textile) 뿐 아니라 자동차 산업, 광치료와 같은 헬스케어 산업에도 큰 영향을 끼칠 것이다”고 말했다. 이번 연구는 ㈜코오롱글로텍과의 공동 연구로 진행됐고 산업통상자원부 산업기술혁신사업의 지원으로 수행됐다. □ 사진 설명 사진1. 옷감 위에서 구동 되고 있는 유기발광다이오드 사진 사진2. 유기발광다이오드 사진3.고유연성 직물 기반 유기발광다이오드의 전류-전압-휘도 및 효율 특성
2017.08.24
조회수 21070
김희탁 교수, 빛으로 물질 끌어올려 구조체 제작하는 기술 개발
〈 김희탁 교수 〉 우리 대학 생명화학공학과 김희탁 교수 연구팀이 새로운 형태의 임프린트 리소그래피 기술을 개발했다. 이 기술은 빛을 이용해 물질을 수직으로 끌어올려 마이크로-나노 구조체를 제작하는 방식으로 복잡하고 정교한 구조를 이전보다 훨씬 손쉽게 제작할 수 있을 것으로 기대된다. 최재호 박사과정이 1저자로 참여한 이번 연구는 나노기술분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 1월 12일자 온라인 판에 게재됐다. 임프린트 리소그래피란 모형을 마치 도장을 찍듯이 각인하고자 하는 물질에 찍어 마이크로-나노 구조체를 제작하는 기술이다. 경제적이고 손쉽게 마이크로-나노 구조 제작이 가능해 기존의 포토리소그래피 기술을 대체할 유망한 리소그래피 기술로 손꼽힌다. 그러나 열, 용매, 자외선 등을 필요로 하는 기존의 임프린트 리소그래피 기술은 물질을 수축시키는 특성이 있어 정확한 구조를 제작하기 어렵다는 한계가 있다. 연구팀은 문제 해결을 위해 가시광선 영역의 빛을 아조벤젠 고분자 물질에 조사했다. 이를 통해 아조벤젠 물질을 수직방향으로 끌어올려 마이크로-나노 구조체를 형성하는 새로운 형태의 광유도 임프린트 리소그래피 기술을 개발했다. 아조벤젠 물질은 빛이 편광하는 방향에 따라 액화돼 흐르는 독특한 특성을 갖는다. 이는 편광 방향을 조절한다면 아조벤젠 물질의 움직임을 통제할 수 있다는 뜻이다. 기존의 아조벤젠 물질을 이용한 구조체 제작은 수평 방향으로 흐르는 현상에만 주목해 수직방향으로의 유체화 현상에 대한 이해와 이를 이용한 구조 제어는 거의 이뤄지지 않았다. 연구팀은 아조벤젠 물질을 움직임을 수직방향으로 유도했다. 빛의 수직방향 편광 성분에 의해 수직으로 흐를 수 있게 만들었고 이 흐름이 각인된 모형의 빈 공간을 채우며 마이크로-나노 구조체를 형성하게 된다. 연구팀이 개발한 임프린트 리소그래피 기술은 기존 기술이 갖고 있던 물질의 수축 문제를 극복해 100 나노미터 이하의 나노 구조체까지 구현하는 데 성공했다. 또한 마이크로-나노 구조체가 결합된 다중 규모의 복잡하고 정교한 구조도 제작했다. 연구팀은 앞으로 수직방향의 아조벤젠 물질의 움직임을 이용해 여러 응용분야에 쓰일 정교하고 다양한 마이크로-나노 구조체를 쉽게 제작하는 데 크게 기여할 것이라고 예상했다. 김 교수는 “아조벤젠 물질이 수평방향으로만 물질 이동을 한다는 기존 틀을 깨고 수직방향 이동을 규명했다”며 “이를 이용해 한 층 진보된 형태의 임프린트 리소그래피를 선보였다는 데 의의가 있다”고 말했다. 이번 연구는 KAIST의 엔드-런(End-Run) 프로그램의 지원을 받아 수행됐다. □ 그림 설명 그림1. 새로운 형태의 임프린트 리쏘그라피 공정 개요도 그림2. 본 기술을 통해 제작된 다양한 구조체 그림3. 복잡한 구조체를 제작한 데이터
2017.02.09
조회수 12892
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
>
다음 페이지
>>
마지막 페이지 6