본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%95%ED%9D%AC%ED%83%9C
최신순
조회순
제1회 녹색 수소기술 심포지엄 개최
우리 대학 나노융합연구소(연구소장 : 정희태)는 LX하우시스(구. LG하우시스)와 공동 주관으로 7월 2일 본교에서 제 1회 ‘Green Hydrogen Technology Symposium’ 행사를 개최했다. 최근 폭설, 폭염, 산불, 태풍 등의 이상기후의 현상은 우리 주위에서 쉽게 자주 찾아볼 수 있는 일이 되었으며, 이에 국제사회는 온실가스에 의한 기후변화 문제의 심각성을 인식하고 이를 해결하기 위하여 유럽을 중심으로 탄소 감축 노력을 강화하는 추세가 이어지고 있다. 우리나라도 2020년 다양한 사회적 논의를 바탕으로 「2050 탄소 중립화」를 선언하였고, 이에 대한 종합적인 전략 및 5대 기본방향을 발표했다. ※ 5대 기본 방향: 1) 깨끗하게 생산된 전기·수소의 활용 확대, 2) 에너지 효율의 혁신적인 향상, 3) 탄소 제거 등 미래기술의 상용화, 4) 순환경제 확대로 산업의 지속 가능성 제고, 5) 탄소 흡수 수단 강화 - 2020년 국가 범정부협의체 장기 저탄소 발전전략(LEDS, Long-term Low greenhous gas Emission Development Strategy) 2050년 탄소중립 목표를 달성하기 위해서는 기존 기술의 향상만으로는 달성하기 힘들고, 기존 기술 개발의 가속화와 더불어 초융합 연구를 통한 파괴적이고 혁신적인 아이디어 구현이 바탕이 되어야 한다. 이에, 나노융합연구소는 KAIST만의 장점을 바탕으로 초융합 R&D 체계를 도입하고자 하며, 기술개발에 앞서 기업(에너지 얼라이언스)과의 지속적인 협의를 통해, 경제사회적 니즈를 받아들여 연구 계획을 수립하고 오픈형 산학연 융합 플랫폼을 개발하여 보다 빠르게 가시적인 성과 창출을 기획하고 있다. 이번 ‘Green Hydrogen Technology Symposium’에서는 한국에너지기술연구원 수소연구단 김우현 책임연구원의 초청세미나가 개최되었으며, ‘개질반응 기반 수소생산 기술의 최근 연구개발 동향’ 주제로 수소경제 시대의 수소 에너지 수요에 대응할 수 있는 주요 개질기반 수소생산 기술 동향들을 소개했다. 또한 그 밖에 환경전문가 이윤호 교수(서울대), 황윤정 교수(서울대), 이규복 교수(충남대)가 참석하여 다양한 시각에서 미래 저탄소 에너지 시대를 준비하기 위한 연구개발의 지향점을 심도있게 논의하였다. 행사를 주최한 나노융합연구소 정희태 소장(생명화학공학과 교수)은 “향후 과학기술은 기후변화, 고령화 및 4차 산업혁명 시대를 준비하고 도약하여야 하는 시대적 사명을 필연적으로 가지고 있으며, 이에 따른 융합기술의 중요성은 너무나 자명하다. 이러한 시대적 문제를 해결하기 위해서는 기존의 학과 단위의 연구 환경에서 벗어나 화학, 생명, 전자, 기계, 소재와 같은 기술융합만이 미래를 이끌 핵심 기술력이며 해결책이 될 것이다.”며 “향후 나노융합연구소에서는 인류가 직면하는 세계적으로 심각한 기후‧환경변화 문제 해결을 위하여 온실가스 감축, 지속가능한 새로운 에너지원 개발, 물/미세먼지 등의 기술의 고도화를 위한 연구를 집중적으로 추진하고자 하며, 이에 KAIST 기후변화대응 연구소 설립을 추진 중에 있다.”고 밝혔다. 또한, 이번 행사를 공동 주최한 LX하우시스에서는 이진규 부사장과 정승문 연구위원이 함께 참석하였으며, 국내‧외 탄소중립을 위한 국가별 정책과 기업들의 전략을 진단하고 그린수소 활성화를 위한 수소경제의 발전 방안에 대하여 심도있는 논의가 이뤄졌다.
2021.07.02
조회수 10319
제 8회 KINC 융합연구상에 남윤성, 박인규 교수 연구팀 선정
우리 대학 나노융합연구소(연구소장 정희태)는 13일(화) 본교 KI빌딩에서 참여 교수님들의 융합연구 장려 및 대학원생들의 연구 의욕 고취를 위한 제 8회 ‘KINC 융합연구상’ 시상식을 개최했다. ‘KINC 융합연구상’은 전년도에 이뤄진 융합연구를 대상으로 창의성과 융합성이 가장 우수한 융합연구를 선정해 연구에 참여한 연구원과 책임자에게 수여하는 상이다. 연구자의 노고를 격려하고 선정된 우수 연구 성과를 구성원들과 함께 공유함으로써 융합연구 활성화 제고를 위한 취지로 마련됐다. 올해 8번째를 맞이하는 ‘KINC 융합연구상’ 수상자는 유전공학적 변형을 거친 섬유형의 바이러스를 이용해 귀금속(Pd) 나노 와이어를 상온 상압에서 계면활성제 없이 합성에 성공한 연구 성과로 신소재공학과 남윤성 교수, 기계공학과 박인규 교수 연구팀이 선정됐다. 특히 이 연구는 귀금속 활성물질의 성능을 극대화 하려는 공통된 공학적 문제의식을 가지고 표면활성이 우수한 귀금속 나노와이어를 합성하고 실제 센서 소자로서의 응용 연구를 함께 진행하였기에 두 연구팀의 융합성이 높게 인정됐다. ( 논문명 : Virus-Templated Self-Mineralization of Ligand-Free Colloidal Palladium Nanostructures for High Surface Activity and Stability, Advanced Functional Materials (2017)) 행사를 주최한 정희태 소장은 “미래사회에는 융합이 산업에 혁명을 일으킬 핵심 키워드로 연구자들에게 보다 융합 연구의 중요성이 제고돼야 하며, 앞으로 융합연구의 발전적인 연구 환경을 조성하기 위하여 더욱 노력할 계획이다.”라고 뜻을 밝혔다. ‘나노융합연구소’는 나노과학기술분야에 대해 학과간의 경계를 허물고 진정한 학제간 공동연구를 촉진해 창조적인 융합연구를 추진하기 위해 지난 2006년 6월 KAIST 연구원 산하에 설립됐다. 현재 나노융합연구소는 14개 학과의 90여명의 교수가 참여하고 있으며 세계를 선도하는 나노융합연구 허브대학연구소를 목표로 우리 대학의 대표적인 융합연구소로 자리 잡고 있다.
2018.03.14
조회수 10788
제7회 KINC 융합연구상 시상식 개최
(왼쪽부터) 이도창 생명화학공학과 교수, 배병수 신소재공학과 교수, 정희태 나노융합연구소 소장, 정후영 UNIST 교수, 윤다은 생명화학공학과 박사과정, 김회윤 신소재공학과 박사과정, 최성율 전기및전자공학부 교수, 이건재 신소재공학과 교수 우리 대학 나노융합연구소(소장 정희태)는 본교 KI빌딩에서 교수님들의 융합연구를 장려하고 대학원생 및 연구원들의 연구 의욕 고취를 위한 '제7회 KINC 융합연구상 시상식' 을 22일(수) 개최했다. 올해로 일곱 번째를 맞이하는 시상식은 연구자의 노고를 격려하고, 우수 연구로 선정된 연구 성과를 구성원들과 함께 공유함으로써 융합연구 분위기를 활성화 시키자는 취지로 마련되었다. KINC 융합연구상은 공모를 통해 접수된 논문을 대상으로 창의성과 융합성이 가장 우수한 논문 2편을 선정하여 논문에 참여한 공동 제1저자와 교신저자에게 각각 상패와 상금을 수여한다. 첫 번째 수상 팀은 고온 및 고습에 견딜 수 있는 퀀텀닷 기술을 개발한 신소재공학과 배병수 교수, 생명화학공학과 이도창 교수 연구팀으로, 연구 결과는 화학분야의 권위 있는 국제 학술지인 ‘미국화학회 학회지(Journal of the American Chemical Society, JACS)’ 2016년 12월 21일자에 게재됐다. 두 번째 수상 팀은 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝힌 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀으로, 연구결과는 자연과학 및 응용과학 분야 세계적인 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 2016년 11월 30일자에 게재됐다. 정희태 소장은 “세계적으로 인정받는 우수한 연구 성과들이 많이 도출되어 매우 기쁘며, 교내 융합연구의 발전적인 연구 환경을 조성하기 위하여 앞으로 행사를 더욱 확대해 나갈 계획이다.”라고 뜻을 밝혔다. ※ KAIST 나노융합연구소는 나노과학기술분야에 대해 학과간의 경계를 허물고 진정한 학제 간 공동연구를 촉진하여 창조적인 융합연구를 추진하기 위해 지난 2006년 6월 KAIST 연구원 산하에 설립되었다. 현재 나노융합연구소에서는 총 85명의 겸임교수가 참여하고 있으며, 최근에는 나노연구의 미래 이슈와 KAIST 경쟁력을 고려하여 재설정한 중점 연구 분야의 연구역량을 결집하여 연구를 수행하면서 세계 최고 수준의 나노융합연구 허브 대학연구소로 성장해 나가고 있다.
2017.03.22
조회수 19192
KAIST, 하계 다보스포럼에 국내 대학 중 유일하게 초청받아
우리 대학이 오는 9~11일 중국 다롄 국제컨퍼런스센터(ICC)에서 열리는 세계경제포럼 하계대회(일명 하계 다보스포럼)에 국내 대학 가운데 유일하게 초청받았다. 하계 다보스포럼(정식명칭 : 새로운 챔피언들의 연차총회)은 중국이 스위스 다보스포럼처럼 세계 경제와 글로벌 이슈를 주도하기 위해 2007년부터 매년 중국에서 개최하는 국제회의이다. ‘성장을 위한 새로운 항로 작성’을 주제로 열리는 올해 포럼에는 90개국 1천500여 명의 정 ‧ 관 ‧ 학계 인사들이 참여해 글로벌 혁신 이슈와 과학기술을 주제로 다양한 세션에서 발표와 토론을 진행한다. KAIST는 이번 포럼에서 전 세계 리더들에게 최신 연구동향을 소개하고 함께 토론하는 자리인 ‘아이디어스랩(IdeasLab)’을 국내 대학 가운데 유일하게 4회 째 운영한다. ‘바이오 소재 vs 나노 소재’를 주제로 열리는 이번 세션은 ‘차세대 산업혁명을 이끌 소재는 무엇이 될 것인가’를 두고 발표와 토론이 진행된다. 회의는 미국 프린스턴대학교 린 루(Lynn Loo) 교수가 사회자로 나서‘토론 랩(Debate Lab)’이라는 새로운 방식으로 진행되며 청중들은 토론 전후에 걸쳐 이슈에 대한 투표도 진행한다. 먼저 세션 위원장을 맡은 강성모 KAIST 총장이 KAIST 현황과 아이디어스랩을 소개하고 이어 사회자가 바이오 소재와 나노 소재의 토론자와 토론 규칙을 설명한다. ‘바이오 소재’분야 토론자로 이상엽 생명화학공학과 특훈교수와 이해신 화학과 교수가 참가해‘생물을 해킹해 플라스틱을 만든다’와 ‘의료용 생체적합성 물질’을 주제로 각각 발표한다. 이어 ‘나노 소재’ 토론자로 정희태 생명화학공학과 석좌교수와 조은애 신소재공학과 교수가 나와 ‘자기조립 나노 물질’과 ‘수소연료를 위한 나노 리파이너리’를 주제로 각각 발표한다. 발표에 이어 세션 참가자들과 발표자들은 ‘바이오 물질과 나노 물질 중 어느 것이 차세대 산업혁명을 이끌 것인가’를 주제로 토론도 진행한다. 이밖에 강성모 KAIST 총장은 글로벌대학리더스포럼(GULF)이 주관하는 ‘산학협력’세션의 토론 리더로도 참여해 구오핑(Guo Ping) 중국 화웨이 부회장, 쟝 뤽 로윈스키(Jean-Luc Lowinski) 사노피 차이나(Sanofi China) 수석 부회장과 함께 산학협력에 관해 토론한다. 강 총장은 현재 세계경제포럼의 GULF 멤버이면서 전자공학의 미래에 관한 글로벌 아젠다 카운슬 의장도 맡고 있다. 강 총장은 “KAIST는 하계 다보스포럼의 초청으로 4회 째 아이디어스랩을 주관한다”며 “KAIST의 혁신적 연구성과가 세계적 수준으로 평가받고 있어 자랑스럽다”라고 밝혔다. 끝.
2015.09.08
조회수 11185
김세정 박사, 2015 세계 빛의 해 기념 빛 이미지전 대상 수상
김 세 정 박사 우리 대학 자연과학대 김세정 박사(지도교수 조용훈)가 한국광학회에서 주최한 ‘2015년 세계 빛의 해 기념 빛 사진전 및 빛 이미지전’ 공모에서 빛 이미지전 부문 대상을 수상했다. 2015년은 UN에서 선포한 세계 빛의 해 (International Year of Light and Light-based Technologies)로 2015 세계 빛의 해 한국 주관기관인 한국광학회에서 다양한 빛의 해 행사 중 하나인 빛 사진전 및 빛 이미지전을 공모했다. 김세정 박사의 수상 작품은 ‘마이크로 바람개비’로 편광현미경으로 액정을 촬영한 사진에 색감을 추가했다. 이 액정은 자가 조립으로 동그란 도메인 구조를 스스로 형성하고, 각각의 도메인은 광보텍스를 형성할 수 있다(Optics Express 게재, 이용희 교수, 정희태 교수 공동연구). 이번 작품은 한국광학회 하계 학술발표회와 함께 진행된 2015 세계 빛의 해 기념 빛 사진전 및 빛 이미지전에 전시됐다. 수상작은 국립과천과학관 및 김대중 컨벤션 센터 등에도 전시될 예정이다. □ 그림 설명 그림1. 김세정 박사의 수상작 '마이크로 바람개비'
2015.07.23
조회수 12215
정희태 교수, 이달의 과학자 상 수상
우리학교 생명화학공학과 정희태 석좌교수가 교육과학기술부ㆍ한국연구재단ㆍ서울경제신문이 공동 주관하는 ‘이달의 과학기술자상’ 7월 수상자로 선정됐다. 정 교수는 전기 전도성이 우수해 ‘꿈의 신소재’로 불리는 그래핀(graphene)의 결정면 크기와 모양을 더 넓게 관찰해 간편히 시각화할 수 있는 기술을 개발, 양질의 그래핀을 만드는데 기여했다. 그래핀은 흑연에서 떼어낸 2차원 평면의 탄소 나노 구조체를 말한다. 이런 단결정 물질을 제조공정으로 넓게 제작하면 그래핀이 다결정성을 띄며 영향을 받아 전기적ㆍ기계적 특성이 낮아지는 문제가 있었다. 정 교수는 그래핀 결정면의 크기와 경계를 쉽고 빠르게 관찰하는 기술로 우수한 특성을 갖는 그래핀 제조를 가능케 했다. 이 원천기술은 그래핀을 이용한 투명전극, 유연한 디스플레이, 태양전지 등의 연구에 응용되고 있다. 이 연구성과는 올해 1월 세계 최고 권위의 과학전문지 네이처의 자매지 ‘네이처 나노테크놀러지(Nature Nanotechnology)’에 실렸다. 정 교수는 나노 재료와 공정을 이용한 광전자소자 응용분야의 세계적인 석학으로 지난 10년간 과학인용색인(SCI) 등재 국제학술지에 120편의 논문을 게재했고, 40여개의 국내외 특허를 출원했다. 지금까지 피인용 횟수는 총 2,500여회에 달한다.
2012.07.04
조회수 12961
고화질 초고속 차세대 디스플레이 개발 가능성 열어
- 세계 최고 ‘네이처’ 자매지 발표,“투명전극 나노패턴을 이용한 무배향막 액정 배향”- 기존의 LCD(액정디스플레이)와는 달리 고분자 배향막*이 필요 없는 신개념 LCD기술이 국내 연구진에 의해 개발되어, 더욱 얇으면서 화질이 뛰어나고 속도도 빠른 차세대 디스플레이 개발에 새로운 가능성을 열었다. ※ 고분자 배향막 : 액정 배향(配向)을 위해 투명전극위에 도포하는 얇은 고분자 필름 우리 학교 생명화학공학과 정희태 석좌교수 가 주도하고 정현수, 전환진 박사과정생(공동1저자), 한국화학연구원 김윤호 박사와 전북대학교 강신웅 교수(공동 교신저자) 연구팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 학술지인 ‘네이처’의 자매지 ‘Nature Asia Materials(NPG Asia Materials)’ 온라인 속보(2월 17일)에 게재되었다. 평판 디스플레이 산업은 21세기 정보화 산업을 주도하는 핵심 산업으로 LCD를 중심으로 활발히 연구되고 있고, 특히 우리나라가 세계시장의 50%이상을 점유하고 있는 세계선도 산업 중 하나이다. LCD에는 전기광학소자로서 액정을 구동시키기 위해 여러 기술이 집약되는데, 특히 표시 소자*의 품질과 기능을 좌우하는 가장 기본적이면서 핵심적인 기술은 LCD를 구동하기 위해 사용하는 액정(Liquid Crystal)을 한쪽 방향으로 정렬하는 액정배향기술이다. ※ 표시 소자(indicating element) : 부호나 문자, 도형, 화상 등 또는 그 조합된 정보를 입력에 대응하여 표시하기 위한 소자현재 모든 LCD 제품의 액정배향기술은 얇은 고분자 필름 표면에 일정한 방향으로 기계적으로 홈을 파고 그 홈을 따라 액정 물질을 배향시키는 기법을 적용하고 있다. 그러나 고분자 배향막은 고분자 설계․합성부터 후처리까지 많은 시간과 비용이 소비되고, 고분자 안정화를 위한 고온공정은 자유롭게 기판을 선택할 수 없게 하여 자유자재로 휘어지는(flexible) 디스플레이와 같은 차세대 디스플레이에 활용하기 힘든 기술적 한계가 있었다. 정희태 교수 연구팀은 고분자 배향막 없이 LCD에 사용되는 투명한 전극용 유리막(ITO)만을 이용해 액정을 배향시키는 무배향막(배향막이 필요 없는) 기술을 개발하는데 성공하였다. 정 교수팀의 원천기술인 신개념 방식의 패턴기법을 전극용 유리막에 적용하여 높은 분해능(20nm)과 높은 종횡비를 갖는 패턴을 형성한 후에도 투명전극의 고유 성질인 전도도와 투과도가 변함없이 유지되어, 배향막과 투명전극의 기능을 동시에 수행할 수 있음이 확인되었다. 연구팀이 개발한 기술은 고분자 배향막 없이 투명전극 패턴만을 이용하여 액정의 수평(혹은 수직) 배향 모두 가능하다. 따라서 제조공정이 기존의 배향막 공정시간만큼 단축되었을 뿐만 아니라, 현재 사용하고 있는 LCD보다 수 마이크로미터에서 센티미터까지 더욱 얇게 LCD를 만들 수 있다. 또한 현재 LCD보다 더욱 낮은 구동전압과 빠른 응답속도 등의 특성을 보여 배터리 수명도 길고 화질이 좋으면서 속도도 빠른, 고화질 초고속 화면 디스플레이 개발에 가능성을 열었다. 아울러 이 기술은 어떠한 기판에도 적용할 수 있고, 나노미터 단위로 미세조절이 가능해 액정 기반의 플렉시블 및 멀티도메인 모드와 같은 차세대 디스플레이에도 적용할 수 있는 기술로 평가 된다. 또한 연구팀이 개발한 투명전극 패턴기술은 디스플레이 분야뿐만 아니라 투명전극 기판이 쓰이는 터치패널 분야에도 활용될 수 있어 민감도가 크게 향상된 터치패널도 만들 수 있게 된다. 정희태 석좌교수는 “LCD에 꼭 필요한 고분자 배향막을 대체하기 위한 기술은 학계와 산업계의 숙원이었는데, 이번에 개발한 기술은 고분자 배향막이 필요 없고, LCD에 사용했던 기판을 그대로 활용하여 구동할 수 있다는 점에서 산업적 의의가 매우 크다. 또한 이 기술을 스마트폰과 태블릿 PC에 적용하면, 기존 제품보다 터치패널의 민감도를 크게 향상시킬 수 있는 등 미래 전자제품 원천기술로서 다각적으로 활용될 것으로 기대한다”고 연구의의를 밝혔다. (좌) 초고분해능(폭 20nm, 높이 200nm)과 고종횡비를 가지는 ITO 패턴의 모습 (우) ITO 패턴 (노란 점선)만을 이용한 액정 배향 편광현미경 사진 (사진설명) 장성우 연구원, 전환진 연구원, 이은형 연구원(왼쪽부터)이 ITO 패턴 제작을 위한 ion-bombardment 공정장비의 상태를 점검하고 있다.
2012.02.27
조회수 19964
꿈의 신소재인 그래핀의 결정면 관찰 신기술 개발
(왼쪽부터) 정현수 박사과정생, 김윤호 박사, 김대우 박사과정생 - 네이처 나노테크놀로지誌 발표,“그래핀 상업화를 위한 핵심 난점 해결”- 꿈의 신소재로 잘 알려진 그래핀의 결정면*을 간편하면서도 더 넓게(대면적으로) 관찰할 수 있는 새로운 기술이 국내 연구진에 의해 개발되었다. ※ 결정면(crystal face) : 결정의 외형을 나타내는 평면으로 격자면과 평행인 면 정희태 석좌교수(한국과학기술원, 교신저자)가 주도하고 김대우 박사과정생, 김윤호 박사(공동1저자), 정현수 박사과정생(제3저자)이 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nature Nanotechnology’ 온라인 속보(11월 20일)에 게재되었다. (논문명: Direct visualization of large-area graphene domains and boundaries by optical birefringency) 정희태 교수 연구팀은 LCD에 사용되는 액정의 광학적 특성*을 이용해, 그래핀 단결정의 크기와 모양을 대면적에 걸쳐 쉽고 빠르게 시각화할 수 있는 기법을 개발하였다. 특히 그래핀의 단결정을 시각화함으로써, 단결정에서 얻을 수 있는 이론값에 가장 가까운 전기전도도를 직접 측정하는 쾌거를 이루었다. ※ 광학적 특성 : 어느 물질에 빛을 통과시키거나 반사시킬 때 생기는 특성 그래핀은 가장 우수한 전기적 특성이 있으면서 투명하고, 기계적으로도 안정하면서 자유자재로 휘어지는 차세대 전자소재이다. 그러나 현재 제조되고 있는 그래핀은 다결정성을 지니고 있어, 단결정일 때보다 상당히 낮은 전기적․기계적 특성을 보인다. 이것은 그래핀의 특성이 결정면의 크기와 경계구조에 큰 영향을 받기 때문인 것으로 알려져 왔다. 따라서 우수한 특성을 갖는 그래핀을 제조하기 위해서는 그래핀 결정면의 영역(도메인)과 경계를 쉽고 빠르게 관찰하는 것이 향후 그래핀의 물성을 크게 향상하고 상업화하기 위해 꼭 필요한 핵심기술이다. 연구팀은 그래핀을 쉽게 대면적에서 관찰할 수 있는 기법을 개발하여 그래핀 상용화분야에서 원천기술을 획득하게 되었고, 그래핀을 이용한 투명전극, 플렉시블 디스플레이, 태양전지와 같은 전자소자 응용연구에도 한 걸음 다가설 수 있게 되었다. 정희태 석좌교수는 “이번 연구는 우리나라가 보유한 세계 최고의 액정배향제어기술*을 토대로, 대면적에 걸쳐 그래핀의 결정면을 누구나 쉽게 관찰할 수 있는 방법을 제시하였다는 점에서 큰 의미가 있다. 이것은 학계와 산업계의 가장 난제 중 하나인 대면적에서의 그래핀 특성평가에 큰 전환점이 되어 양질의 그래핀 제조에 큰 도움을 줄 것이고, 그래핀을 이용한 미래형 전자소자 개발에 한걸음 다가갈 수 있을 것”이라고 연구의의를 밝혔다. ※ 액정배향제어기술 : 액정의 방향을 일정하게 만드는 기술 (좌) 그래핀 결정면을 따라 배향된 액정분자 배향 모식도 (우) 편광현미경으로 관찰된 실제 그래핀 결정면의 모습
2011.11.28
조회수 18760
10nm대의 초미세 나노패터닝 新기술 개발
- 나노 레터스 誌 발표, 대면적 10nm대 나노패턴의 실용화 가능성 열어 - 복잡하고 다양한 10nm대의 고분해능 나노패턴을 대면적에 효율적으로 제작할 수 있는 기술이 국내연구진에 의해 개발되었다. KAIST 정희태 교수가 주도한 이번 연구결과는 나노분야 세계적인 학술지인 ‘나노 레터스(Nano Letters)’에 온라인으로 최근 (8. 17) 게재되었다. 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 박찬모)이 시행하는 ‘세계수준의 연구중심대학(WCU) 육성사업’과 ‘중견연구자지원사업 도약연구’의 지원을 받아 수행되었다. 정희태 교수 연구팀은 차세대 반도체, 디스플레이 및 나노전자 소자개발에 핵심기술인 10nm대의 고분해능 패턴을 원하는 모양과 크기로 쉽게 대면적에 제작할 수 있는 기술을 개발하였다. 연구팀은 전압차를 이용하여 아르곤(Ar) 입자를 가속시켜, 원하는 목적층에 물리적 충격을 줌으로써 목적층의 물질을 제거하는 이온충격(ion-bombardment) 공정 중에서 나타나는 2차 스퍼터링 (secondary sputtering)이라는 현상을 적용하였다. 이 현상은 이온충격(ion-bombardment)으로 물리적 식각을 할 때 목적층의 물질이 다양한 각분포로 이탈하여 마스크 패턴의 옆면에 흡착하는 현상을 이용한 것으로서, 선 모양, 컵 모양, 가운데가 비어있는 실린더(Hole-cylinder) 모양, 삼각 터널(triangle tunnel) 등 다양한 모양을 가지며, 최대 종횡비(high-aspect-ratio) 20까지 높이를 간단하게 제어할 수 있다. 이렇게 제작된 패턴은 웨이퍼, 유리기판, 쿼츠(Quartz), 금속판 뿐만 아니라 PET필름과 같은 플렉서블 기판에서도 공정이 가능하기 때문에 범용적으로 사용되어 질 수 있다. 연구팀은 투명한 쿼츠셀 위에 금 선 패턴을 제작하여 ITO기판을 대체할 수 있을 만큼 높은 성능을 갖는 투명전극을 제작하여 태양전지에 응용함으로써 다양한 광학/전기적 나노소자에 응용할 수 있음을 보였다. 동 연구는 기존의 리소그라피기술로 제작된 패턴의 해상도를 능가하는 10nm급 패턴을 제작할 수 있는 신기술로 거의 모든 금속(금, 은, 알루미륨, 크롬)과 무기물(ZnO, ITO, SiO2)에 적용가능하며, 기존의 패터닝 방법과 비교하여 낮은 공정비용과 간단한 실험공정으로 고해상도 패턴을 대면적에 균일하게 제작할 수 있다는 장점이 있다. 정희태 교수는 “10nm급의 고해상도 미세패턴 제작기술은 미래산업 전반에 걸쳐 매우 중요한 기술군으로, 그동안 나노분야에서 극복해야 할 핵심과제였습니다. 본 연구는 이러한 문제점을 비교적 간단한 방법으로 극복하고 향후 태양광 발전, 반도체 및 바이오소자의 효율증대에 적용가능한 기술”이라고 연구의의를 설명하였다.
2010.09.08
조회수 16749
생명화공 정희태교수, 세계최초 액정 초미세 나노패턴소자 개발
- 15일자 네이처 머티리얼스誌 온라인판 게재- 나노-바이오 전자소자 산업분야에서 시장 선점 기대우리 학교 생명화학공학과 정희태(鄭喜台, 42) 교수 연구팀이 액정 디스플레이 (LCD)의 핵심소재로 잘 알려져 있는 액정물질을 이용, 나노기술의 핵심인 차세대 초미세 나노패턴소자를 세계최초로 개발했다. 관련 연구논문은 15일자 네이처 머티리얼스(Nature Materials)誌 온라인판에 게재된다. 나노패턴 제작은 차세대 초고밀도 반도체 메모리기술과 바이오칩 등 나노기술의 핵심분야다. 특히, 鄭 교수팀의 액정을 이용한 패턴구현은 기존의 패턴 방식에 비해 대면적을 구현할 수 있을 뿐만 아니라 바이오 특성을 가지는 나노물질도 액정 패턴 내에 배열할 수 있다는 것이 큰 장점이다. LCD를 구동하는 물질인 네마틱 액정과 달리 鄭 교수가 사용한 스메틱 액정은 LCD 응답특성이 매우 우수함에도 불구하고 자연적으로 존재하는 결함구조 때문에 LCD 구동물질로 사용하지 못하고 있다. 이러한 스메틱 액정은 기판의 표면특성에 따라서 무질서한 형태의 회오리 형 결함구조를 가진다. 이번 연구에서는 마이크로미터 수준의 직선이 새겨진 표면 처리된 실리콘 기판을 사용함으로써 무질서한 회오리 형태의 액정 결함구조를 규칙적으로 제어하였다(첨부 자료그림 참조). 특히 이 공정은 기존의 나노패턴에 적용하는 방식과 비교하여 제작시간을 수십 배 이상 줄일 수 있으며, 결함구조 내에 다른 형태의 기능성 물질도 규칙적으로 배열 할 수 있음을 확인하였다. 이는 다양한 형태의 패턴이 필요한 실제 반도체와 단백질 칩 등의 바이오 소자에 적용할 수 있는 가능성을 제시하고 있다 (자료그림 중 삽입사진 참조). 이번 연구결과로 LCD의 세계적 강국인 우리나라가 액정을 이용한 나노분야에서도 세계 최고의 원천기술을 갖게 되었다. 향후 액정을 이용한 새로운 응용의 신기원을 열게 되었으며, 나노-바이오 전자소자 산업분야에서 시장 선점 및 막대한 부가가치 창출 등을 통해 국가경쟁력 강화에 크게 기여할 것으로 기대된다. 연성재료(Soft Materials)를 이용하여 나노패턴을 제조하는 기술은 전 세계적으로 나노-바이오 분야에서 큰 이슈가 되는 연구로써, 연구의 핵심은 바이오 및 광전자소자 응용을 위하여 대면적에서 결함이 없는 소재의 개발에 있다. 이번 鄭 교수팀이 적용한 액정은 결함구조를 가지는 대표적인 물질로서 지금까지 학계에서는 대면적 나노패턴이 불가능하다고 인식돼 왔다. 鄭 교수는 “이번 연구결과는 연성소재를 이용한 나노패턴소자 제작방식의 기존 개념을 완전히 뒤엎는 것이다. 결함을 없애야만 한다는 기존의 생각에서 탈피하여 결함을 규칙적으로 구현하면 패턴에 이용할 수 있다는 발상의 전환으로 대면적 나노패턴을 개발했다는데 의미가 있으며, 향후 나노분야 전반에 걸쳐 영향이 클 것” 이라고 밝혔다. 이번 연구결과는 鄭 교수(교신저자)의 주도 하에 KAIST 물리학과 김만원 교수팀과 미국 캔트 주립대학의 액정센터 올래그 라브랜토비치(Oleg Lavrentovich)교수가 함께 일궈낸 성과다. 鄭 교수는 나노물질분야에서 사이언스, PNAS, Advanced Materials에 최정상급 논문을 다수 발표하는 등 나노물질 분야에서 차세대 주자로서 두각을 나타내고 있는 젊은 과학자다. <해설> 액정: 유동성이 있으면서 고체적인 특성을 나타낸다. 전기적 특성이 매우 뛰어나 LCD 구동을 위한 핵심 물질로 사용된다. 네마틱, 스메틱, 콜레스테릭 등 다양한 종류의 액정이 존재한다. 현재 LCD에 사용하는 액정은 네마틱 액정이며 콜레스테릭 액정은 반사거울과 초정밀 온도계에 사용된다. 鄭 교수팀이 사용한 액정은 스메틱 액정으로서 네마틱 액정보다 자연계와 합성물질에서 더욱 많이 존재하고, 산업체와 학계에서 오랜기간 동안 연구해 왔음에도 불구하고 결함구조 등의 문제점으로 인하여 산업에 적용하지 못하고 있는 물질이다. <첨부. 수 밀리미터 크기의 대면적 액정물질 나노패턴 현미경 사진>우측상단 삽입사진은 액정나노패턴내에 형광나노입자를 규칙적으로 포집한 리소그라피 제작사진
2007.10.15
조회수 22785
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1