본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B4%EC%83%81%EC%97%BD
최신순
조회순
이상엽 특훈교수, 중국 북경화공대학교 명예교수 임명
우리 학교 생명화학공학과 이상엽 특훈교수(KAIST 연구원장)가 중국 화학공학 관련 교육과 연구를 선도하는 북경화공대학교의 명예교수로 위촉됐다. 북경화공대학교는 이 교수가 대사공학과 합성생물학 분야의 세계적인 선도 연구자로서 다가오는 친환경 화학 산업에 필요한 핵심 기술들을 다수 개발한 업적을 높이 평가해 명예교수로 추대했다. 이 교수는 합성 sRNA를 이용한 균주를 효율적으로 개발하는 원천기술 등 다수의 대사공학과 합성생물학 기술들을 개발했다. 또 세계 최고효율의 숙신산과 엔지니어링 플라스틱 원료 생산기술, 젖산함유 고분자와 가솔린과 같은 비천연 화학물질을 생산할 수 있는 기술을 세계 최초로 개발했다. 2012년에는 중국과학원 명예교수, 2013년에는 중국 상하이 자오퉁대학교 자문교수, 그리고 올해는 중국 우한대학교와 허베이공과대학교의 명예교수로 추대된 데 이어 중국에서만 다섯 번째 명예직 교수로 위촉됐다. 또 이 교수는 호주 퀸즈랜드대학교의 명예교수이기도 하다. 한편, 이 교수는 지난 9월 세계경제포럼의 미래화학 및 바이오텍 글로벌 아젠다 카운슬(Global Agenda Council on Future of Chemicals and Biotechnology) 및 미래기술 메타카운슬(Global Agenda Meta-Council on Emerging Technologies)의 위원으로 선임돼 인류와 지구환경의 지속성장을 위한 전략들을 제시할 예정이다.
2014.11.12
조회수 7995
이상엽 특훈교수, 중국 우한대 명예교수 추대
우리 학교 생명화학공학과 이상엽 특훈교수가 중국 TOP 5 명문대인 우한대학교 명예교수로 추대됐다. 우한대학교는 이 교수가 친환경 화학 산업에 필수적인 미생물대사공학 등의 연구 분야에서 혁신적인 성과로 전세계를 선도한 것은 물론 탁월한 리더십을 발휘한 업적을 인정해 명예교수로 위촉했다. 이 교수는 세계 최고효율의 숙신산과 엔지니어링 플라스틱 원료 생산기술을 개발했다. 또 최근에는 젖산함유 고분자와 가솔린과 같은 비천연 화학물질을 생산할 수 있는 기술을 세계 최초로 개발한 성과를 인정받아 지난 5월 호암공학상을 받기도 했다. 한편, 이 교수는 2012년에는 중국과학원 명예교수, 그리고 2013년에는 중국 상하이 자오퉁대학교 자문교수로 추대된 바 있다.
2014.10.16
조회수 7368
이상엽 특훈교수, 톈진대학교 베이양 명사강연
우리 학교 생명화학공학과 이상엽 특훈교수(KAIST 연구원장)는 12일 중국 톈진대학교에서 베이양 명사강연(BeiYang Lecture)을 한다. 톈진대학교 관계자는 “베이양 강연은 미국 에너지성 장관을 역임한 스티븐 추박사 등 노벨상 수상자들을 초청하는 명사강연”이라며 “이 교수는 시스템대사공학을 통한 지속가능한 바이오화학 산업분야 연구에서 세계적인 리더로서의 명성으로 강연자로 정했다”고 선정배경을 밝혔다. 이날 이 교수는 ‘미생물대사공학에 의한 화학물질의 생산’을 주제로 강연을 펼친 한 후 교수 및 학생들과 활발한 토론을 할 예정이다. 이 교수는 숙신산, 부탄올, 엔지니어링 플라스틱 원료 등을 세계 최고효율로 생산하는 미생물과 생물공정을 개발한 바 있다. 최근에는 가솔린과 같은 비천연 화학물질을 세계 최초로 생산할 수 있는 가능성을 입증하는 등 이 분야 연구를 세계적으로 선도하고 있다.
2014.09.12
조회수 6969
이상엽 특훈교수, 하계 다보스포럼 4개 세션 주도
우리 학교 생명화학공학과 이상엽 특훈교수(KAIST 연구원장)가 10일~12일 중국 톈진에서 개최되는 하계 세계경제포럼(하계 다보스포럼)에서 세계적인 생명공학자로서의 명성을 유감없이 발휘하고 있다. 이 교수는 이번 하계 다보스포럼에서 학계 참여자로서는 드물게 ‘아이디어스랩(IdeasLab)’ 등 4개의 세션을 주관하거나 주요 토론자로 참석한다. 이 교수는 10일 하루 동안 3개의 세션를 진행한다. 첫 세션인 ‘생명공학 생태계’에서는 나날이 중요해지는 생명공학 산업을 살펴보고 미래 바이오기술을 육성하는데 필요한 주요 정책이나 산업계 동향을 참석자와 함께 심도 있게 조망해본다. 뒤이어 개최되는 ‘KAIST 아이디어스랩’에서는 ‘생명공학과 나노기술 접목’이라는 주제로 발표를 한 후 전문가와 함께 토론을 진행한다. 이번 하계 다보스포럼에서 KAIST는 국내 대학 중 유일하게 단독으로 초청받아 ‘아이디어스랩’을 운영하고, 미래 유망기술로 주목받고 있는 ‘나노기술’을 집중적으로 다루게 된다. KAIST 나노기술연구를 선도하고 있는 신소재공학과 이건재 교수, 김상욱 교수 등 신진 교수진과 산업계 전문가가 세션에 참석할 예정이다. 이 교수는 10일 오후 ‘헬스케어의 전략적 전환’ 세션의 진행자로 나서 생명과학 및 의료분야에서의 주요 기술적인 동향을 파악하고 혁신기술을 응용한 새로운 의과학 비즈니스 모델 발굴 및 발전 방향에 대한 논의를 주도한다. 아울러 이 교수는 세계경제포럼의 글로벌아젠다카운슬(Global Agenda Council) 멤버들을 주축으로 해서 개최되는 ‘세계 유망 기술’ 세션에서 토론 리더로 참여해 ‘세계 10대 유망 기술’과 ‘바이오 부문 10대 기술’ 선정에 관해 설명하고 2015년도 10대 기술 발표와 관련해 전문가들과 토론할 계획이다. 다보스포럼은 지난 2012년부터 ‘세계 10대 유망 기술’을 선정해 발표해오고 있다. ‘10대 유망기술 선정’은 이상엽 특훈교수가 미래기술 글로벌아젠다카운슬 의장을 맡았을 때부터 시작한 것으로 선정결과는 매년 다보스포럼 개최 중에 발표되며 그 결과는 전 세계로부터 많은 주목을 받고 있다. 이 교수는 지난 10여 년간 세계경제포럼(다보스포럼)에서 차세대 아시아 지도자로 활동해 왔으며 미래기술 및 바이오기술 글로벌아젠다카운슬 의장을 역임한 바 있다. 또 세계경제포럼의 기술선도기업 추천 및 선정위원, 전 세계 화학회사 총수들의 모임에 특별자문위원으로 활동하는 등 세계경제포럼에서 활발한 활동을 하고 있다.
2014.09.10
조회수 8546
이상엽 특훈교수, 세계경제포럼 워크숍 패널 참석
우리 학교 생명화학공학과 이상엽(KAIST연구원장) 특훈교수가 19일(목)~20일(금) 미국 샌프란시스코에서 열리는 세계경제포럼 글로벌 성장사와 기술혁신가 워크숍에서 ‘와해성 기술(distruptive technologies)’ 세션 패널로 참석한다. 세계경제포럼의 기술혁신가 선정 평가위원으로 활동하고 있는 이 교수는 워크숍에서 미래예측을 통해 분석한 인류가 직면한 문제들과 이를 해결하기위한 융합적 와해성 기술에 대해 전 세계 기술혁신가들과 패널토론을 벌인다. 이와 함께 이 교수가 2012년 세계경제포럼 미래기술 글로벌아젠다카운슬 의장을 맡았을 당시 시작한 세계경제포럼의 10대 떠오르는 기술과 우리나라 창조경제 비전을 이루기 위한 기술혁신전략에 대해서도 논의할 예정이다. 세계경제포럼은 매년 세계를 선도하는 기술혁신기업들을 선정해 기업의 대표자가 기술혁신가 발표를 진행한다. 이번 워크숍에서는 와해성 기술 외에도 21세기를 주도할 인재양성 모델, 사물인터넷, 지적재산권의 창조를 위한 혁신방안, 사회 발전을 위한 빅데이터 활용방안, 무인자동차를 포함한 통합적 네트워크 교통 등의 세션이 열린다. 이번 워크숍에는 프로스트앤설리반의 데이비드 프릭스태드 회장, 글로비스의 호리 요시토(Yoshito Hori) 회장 등 글로벌 리더들과 함께 에어비앤비(Airbnb), 알파벳에너지(Alphabet Energy), 오아시스 워터(Oasys Water) 등 기술혁신가로 선정된 기업의 창업자 및 CEO 100여명이 참가한다.
2014.06.19
조회수 8291
KAIST 이상엽 특훈교수, 다보스포럼 세션 주관
- 아이디어랩 주관 및 지속가능한 화학 산업을 위한 전략 발표 - 우리 학교 생명화학공학과 이상엽 특훈교수가 오는 21일부터 25일까지 스위스 다보스에서 열리는 다보스포럼(세계경제포럼)에 참석한다. 다보스포럼은 전세계 기업인, 정치인, 학자, 언론인 등이 세계경제를 비롯해 더 나은 세상을 만들기 위해 필요한 전략 등에 대해 발표하고 토론하는 모임이다. 전 세계 다양한 경제주체들이 올해는 경제 위기를 벗어날 것이라고 기대하고 있어 ‘세계의 재편 : 정치, 기업, 사회에 대한 영향(The reshaping of the world : consequences for society, politics and business)’을 주제로 정했다. 이 교수는 22일 다보스포럼 본회의장에서 미국 캘리포니아공과대학(Caltech)과 ‘실험실에서 생명(From lab to life)’을 주제로 아이디어랩 세션을 주관할 예정이다. 이 교수는 3명의 교수들과 나노테크놀로지를 이용한 경량의 고내구성 물질, 게놈을 읽고 쓰는 것, 무선 생체진단 시스템 등 대해 토론한다. 이와 함께 세계 굴지의 기업총수들이 참석하는 ‘지속가능성, 혁신과 성장’ 세션에 초청돼 떠오르는 기술 및 특히 생명공학기술이 미래 사회와 기업을 어떻게 변화시킬 지에 대해 발제한다. 그리고 특별자문위원으로 활동 중인 세계 화학 산업 최고경영자 모임에 참석해 바이오기반 화학 산업과 환경 친화적 기업으로의 변화에 대해 토론을 벌이는 등 활발한 활동을 할 예정이다. 이상엽 특훈교수는 2012년 세계경제포럼 미래기술 글로벌아젠다카운슬(Global Agenda Council, GAC) 의장을 맡아 10대 떠오르는 기술들을 선정하고 발표한 바 있으며, 2013년 생명공학 글로벌 아젠다 카운슬 초대 의장을 맡았다.
2014.01.20
조회수 11811
이상엽 특훈교수, 제1회 반트 호프 강연자로 선정
우리 학교 생명화학공학과 이상엽 특훈교수가 네덜란드 델프트공과대학(Technical University of Delft)에서 주관하는 ‘제1회 야코부스 반트 호프 강연자(Jacobus van’t Hoff Lecturer)’로 선정돼 오는 13일 델프트공과대학 대강당에서 강연을 한다. 야코부스 반트 호프 박사(1852~1911)는 네덜란드 출신으로 용액 내 화학물질의 거동과 삼투압법칙 등을 발견한 공로로 1901년 제1회 노벨화학상을 수상했다. 델프트공대는 올해부터 반트 호프 박사의 업적을 기리며 생명화학공학분야에서 커다란 기여를 한 연구자에게 ‘반트 호프 강연자 상’을 수여하고 기념 강연회를 갖는다. 이 교수는 시스템대사공학을 창시하고 숙신산, 다이아민, 가솔린 등 미생물을 이용해 다양한 석유화학물질들을 친 환경적으로 지속가능하게 생산하는 ‘바이오리파이너리’ 분야에서 탁월한 업적을 이룬 점을 인정받아 강연자로 초청됐다. 최근 미국화학회 마빈존슨상, 미국산업미생물생명공학회의 찰스톰상, 암젠 생명화학공학상 등 해외에서 유명한 상을 다수 수상한 이 교수는 현재 한국과학기술한림원, 한국공학한림원, 미국공학한림원 외국회원, 세계경제포럼의 바이오텍 글로벌아젠다카운슬 의장으로 활동 중인 생명공학 분야 세계적인 리더다. 최근 세계최초로 가솔린을 만들 수 있는 미생물을 만들어 "네이처(Nature)"지 표지논문을 게재하기도 했다.
2013.11.12
조회수 8723
대장균 이용한 페놀 생산 성공
- 세계 최초로 대장균 이용해 리터당 3.8g의 페놀을 24시간 내 생산 성공 - 우리 학교 이상엽 특훈교수팀은 대장균을 이용해 재생 가능한 바이오매스로부터 페놀(phenol)을 생산하는 원천기술을 개발해 바이오테크놀로지(Biotechnology) 11일자 온라인판에 게재됐다. 이 기술은 친환경적인 미생물 발효 공정을 통해 화학물질을 생산하는 대사공학·공정 기술을 기반으로 개발돼 국내·외 생명공학 및 산업기술 발전에 크게 기여할 것으로 기대된다. 페놀은 석유화학공정을 통해 연간 800만 톤 이상 생산돼 폴리카보네이트, 에폭시, 제초제 등 다양한 산업에 폭넓게 사용되는 화학물질이다. 페놀이 갖고 있는 미생물에 대한 독성으로 인해 미생물을 이용한 페놀의 생산에 대한 연구는 그동안 어려움이 많아 생산량이 리터당 1g 미만 수준으로 더 이상의 향상이 이루어지지 못하고 있는 실정이었다. 최근 다양한 대장균들의 유전적, 생리·대사적 차이점이 보고되고 있는데 이 교수 연구팀은 이에 주목해 18종의 다양한 대장균 균주에 대해 동시에 대사공학을 적용해 그 중 ‘BL21’ 이라는 대장균 균주가 페놀생산에 가장 적합하다는 것을 발견했다. 연구팀이 적용한 기술 중 ‘합성 조절 RNA 기술’은 기존의 유전자 결실 방법보다 월등히 빠른 시간에 대사흐름의 조절을 가능하게 하는 기술로써 이번 연구에서도 18종의 대장균에 대한 대사공학을 동시에 진행하는데 중요한 역할을 했다. 또 미생물을 이용한 페놀의 생산에 있어 가장 큰 걸림돌이 페놀의 독성인데 연구팀은 발효공정에서 페놀의 대장균에 대한 독성을 최소화 할 수 있는 이상발효 공정(biphasic fermentation)을 이용해 페놀의 생산량을 증가시킬 수 있었다. 이렇게 개발된 대장균 균주는 기존 균주에 비해 월등히 높은 생산량과 생산능력을 보였으며 이상 유가식 발효(biphasic fed-batch fermentation)에서 리터당 3.8g의 페놀을 24시간 내에 생산할 수 있었다. 즉, 대장균을 이용해 재생 가능한 바이오매스로부터 쉽게 얻어질 수 있는 포도당을 이용해 페놀을 생산할 수 있는 균주를 개발해 세계 최고의 페놀 생산능력을 보이는 균주를 개발했다. 김병진 박사는 “다양한 합성생물학 기술들을 기반으로 대장균을 개량해 페놀을 처음으로 생산했으며 가장 높은 농도와 생산성을 기록했다”며 “발효 공정의 개량을 통해 미생물에 독성을 지니는 화합물의 생산가능성을 보여줬다는데 커다란 의미가 있다”고 말했다. KAIST 생명화학공학과 이상엽 특훈교수 지도하에 김병진 박사, 박혜권 연구원이 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 글로벌 프론티어사업 지능형 바이오시스템설계 및 합성연구단의 지원을 받아 수행됐다.
2013.10.30
조회수 11541
이상엽 특훈교수, 세계과학학술원 펠로우 선임
우리 학교 생명화학공학과 이상엽 특훈교수가 세계과학학술원 어소시에이트 펠로우로 이달 선임됐다. 세계과학학술원은 개발도상국 선도과학자들의 주도로 1983년 출범해 1985년 유엔에서 정식 발족, 유엔의 유네스코 산하 정식 기구로 운영되고 있다. 개발도상국의 석학은 펠로우로, 미국·독일·영국 등 선진국의 석학은 어소시에이트 펠로우로 선임되며, 회원은 1,100여명에 이른다. 이 교수는 우리나라도 최근 선진국으로 분류됨에 따라 어소시에이트 펠로우로 선임됐다. 이 교수는 미생물 대사공학의 전문가로, 대사공학과 시스템생물학, 합성생물학 등을 접목해 ‘시스템대사공학’을 창시하고, 다양한 화학물질 생산시스템 개발에 적용해 바이오연료, 친환경 화학물질 생산 공정을 다수 개발했다. 최근 미국화학회 마빈존슨상, 미국산업미생물생명공학회의 찰스톰상, 암젠 생명화학공학상 등 해외에서 유명한 상을 다수 수상한 이 교수는 현재 한국과학기술한림원, 한국공학한림원, 미국공학한림원 외국회원, 세계경제포럼의 바이오텍 글로벌아젠다카운슬 의장으로 활동 중인 생명공학 분야 세계적인 리더다. 최근 세계최초로 가솔린을 만들 수 있는 미생물을 만들어 "네이처(Nature)"지 표지논문을 게재하기도 했다.
2013.10.29
조회수 8691
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 - 우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다. 이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다. * 논문명 : Microbial production of short-chain alkanes 연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다. * 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법 가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다. * 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당 연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다. 또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다. 개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다. 또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다. 그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로 a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산 (보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다. 그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 16142
이상엽 특훈교수, 중국 상해교통대 자문교수 선임
- 대사공학을 중심으로 한 생명공학분야 탁월한 업적 인정받아 - 우리 학교 생명화학공학과 이상엽 특훈교수가 중국 상해교통대 자문교수로 선임됐다. 이 교수는 생명공학분야 자문교수로 올해 8월부터 2018년 7월까지 5년간 활동하게 된다. 베이징대, 칭화대와 더불어 중국 3대 명문대 중 하나인 상해교통대는 노벨상 수상자 등 전 세계적으로 학문적 업적이 뛰어난 학자들을 위원회의 철저한 심사를 거쳐 자문교수로 임명한다. 자문교수들은 대학 연구 및 교육에 관한 제반 사항에 대한 자문을 하며, 특정 연구 분야 공동연구 등을 수행하게 된다. 이 교수는 대사공학을 중심으로 한 생명공학 분야에 탁월한 업적을 인정받아 자문교수로 선임됐다. 이 교수는 미생물 대사공학의 전문가로, 대사공학과 시스템생물학, 합성생물학 등을 접목해 ‘시스템대사공학’을 창시하고, 다양한 화학물질 생산 시스템 개발에 적용해 바이오연료, 친환경 화학물질 생산 공정들을 다수 개발했다. 최근 미국화학회 마빈존슨상, 미국산업미생물생명공학회의 찰스톰상, 암젠 생명화학공학상 등 해외에서 유명한 상을 다수 수상한 이 교수는 현재 한국과학기술한림원, 한국공학한림원, 미국공학한림원 외국회원, 세계경제포럼의 바이오텍 글로벌아젠다카운슬 의장으로 활동 중인 생명공학 분야 세계적인 리더다.
2013.08.14
조회수 8294
세계 최초 맞춤형 미생물 균주 대량 생산기술 개발
- 고부가가치 산업원료 생산 균주를 간편하고 빠르게 개발할 수 있는 원천기술 확보 - 우리 학교 생명화학공학과 이상엽 특훈교수와 유승민 연구교수 연구팀은 나일론 등 산업에 필요한 원료를 만드는 미생물 균주를 친환경 방법으로 쉽고 빠르게 대량 생산할 수 있는 ‘합성 조절 RNA’ 설계 원천기술을 세계 최초로 개발했다. 이번 연구결과는 세계적 학술지인 네이처 프로토콜스(Nature Protocols) 9월호 표지논문으로 선정되어 8월 9일 게재(온라인판)됐다. ’합성 조절 RNA 설계 기술’은 기존에 산업 균주를 개량하거나, 아직까지 알려지지 않은 미개척 산업 균주 개발‧개량에 광범위하게 적용이 가능하여 비천연 고분자를 포함한 다양한 화학물질, 원료, 의약품 등을 보다 효율적으로 개발, 생산할 수 있는 핵심원천기술이다. 기존의 균주개발은 유전자 결실(knockout) 이라는 유전공학 기법을 이용하여 미생물 염색체 내의 유전자를 하나씩 제거하는 방법을 통해 미생물내의 생산 물질의 양이 증가하는지를 관찰하는 것이었다. 그러나 아무리 작은 미생물일지라도 수천 개 이상의 유전자로 이루어져 있기에 이런 접근 방법을 통해 생물체 대사회로내의 모든 유전자를 조절한다면 수개월에서 수년의 시간이 소요되고 대용량 실험이 매우 어려우며, 미생물의 생장을 저해하고 원치 않은 물질들이 생산되는 한계가 있었다. 이상엽 교수와 유승민 연구교수는 이러한 기존 방법의 한계 극복을 위해 해당 유전자와 결합되는 부위의 합성 조절 RNA 유전정보를 바꾸는 ‘합성 조절 RNA’ 설계법을 개발하였다. 이를 통해 대장균의 조절 RNA를 기본골격으로 하여 세포내 존재하는 유전자의 발현을 단백질 수준에서 제어할 수 있는 맞춤형 합성 조절 RNA를 3~4일내에 제작할 수 있는 원천기술을 개발하였다. 이렇게 설계된 합성 조절 RNA들은 미생물 게놈을 건드리지 않은 채 유전자 전달체에 삽입하여 제작되므로 여러 종류의 균주들과 여러 유전자들에 대하여 동시다발적인 대용량 실험이 가능하다. 또한, 다양한 균주에 적용시 고효율의 균주를 선별하거나, 유전자 발현조절 효율이 가장 좋은 목적 유전자를 선별할 수 있어 향후 조절 RNA 라이브러리(Library)까지 구축할 수 있다. 네이처 프로토콜스 편집자인 이탄 즈로토린스키(Eytan Zlotorynski) 박사는 “본 논문은 합성 sRNA를 디자인하고 응용하는데 필요한 상세한 프로토콜을 기술하고 있어 생명과학과 생명공학 분야 연구에 매우 널리 활용될 것이며, 특히 대사공학과 합성생물학 연구에서 유용할 것이다”라고 말했다. KAIST 산학협력단 배중면 단장은 “본 원천기술에 대해 이미 해외 기업들이 관심을 표명하며 기술이전계약을 제안하고 있으므로 2년 이내에 기술이전이 이루어질 것으로 본다“고 밝혔다.
2013.08.09
조회수 9540
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 13