본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B4%EA%B1%B4%EC%9E%AC
최신순
조회순
이건재 교수, 유연 수직형 마이크로 LED 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수팀과 생명과학과 김대수 교수팀이 유연한 수직형 마이크로 LED 기술을 개발했으며, 이를 동물의 뇌에 삽입하여 빛으로 행동을 제어하는 데 성공하였다고 밝혔다. 마이크로 LED는 기존 LED 칩 크기를 크게 축소시켜 적, 녹, 청색의 발광소재로 사용하는 기술로서, 저전력과 빠른 응답속도, 뛰어난 유연성을 가져 차세대 디스플레이로 각광받고 있다. 현재 산업계에서는 200마이크로미터(μm) 이상의 크기를 갖는 두꺼운 미니 LED 칩을 소형화해 개별 전사하는 방식을 채택하고 있어 대량 생산이 어렵고 생산단가가 높으며, 소요 시간이 오래 걸리는 등의 한계를 갖고 있다. 이번 연구에서 이 교수 연구팀은 수직 LED용 양산 장비를 자체적으로 설계하여 5마이크로미터의 두께, 80마이크로미터 이하의 크기를 갖는 2500여 개의 박막 LED를 이방성 도전 필름을 활용하여 한 번에 플라스틱 기판으로 전사함과 동시에 상호 연결된 유연한 수직형 마이크로 LED를 구현하였다. 이러한 수직형 마이크로 LED는 기존 수평형 마이크로 LED와 비교해 3배 이상 향상된 광 효율을 갖으며, 박막 LED의 발열로 인한 수명, 낮은 해상도 및 신뢰성 문제를 해결할 수 있다. 이 교수는 2009년부터 마이크로 LED 연구를 진행해 왔으며, 20여 개의 국내외 원천 특허를 등록하였을 뿐만 아니라, 지난 4년 간 교신저자로서 총 임팩트 팩터 600에 달하는 40여 편의 논문을 발표하였다. 한편, 뇌과학 분야에서는 빛을 이용한 인간 뇌의 신경회로를 밝히는 광유전학이 주목받고 있다. 이번에 개발한 기술은 뇌의 모든 신경세포를 자극하는 전기자극과 달리 흥분 및 억제 신경세포만을 선택적으로 자극할 수 있기 때문에 정밀한 뇌 분석, 고해상도의 뇌 지도 제작 및 신경세포 제어가 가능하다. 이번 연구에서는 30 밀리와트/제곱밀리미터(mW/mm2) 이상의 강한 빛을 내는 유연 마이크로 LED를 쥐의 뇌에 삽입하여 대뇌 표면으로부터 깊은 곳에 위치한 운동 신경세포를 활성화시켜 쥐의 행동을 제어하였을 뿐만 아니라, 발열이 적어 뇌조직의 손상 없는 생체 삽입형 유연 전자 시스템을 구현하였다. 이건재 교수는 “이번에 개발된 수직 마이크로 LED 및 전사 패키징 기술은 저전력을 필요로 하는 스마트워치, 모바일 디스플레이, 웨어러블 조명 등에 바로 활용될 수 있을 것이며, 인간이 아직 풀지 못한 뇌과학 및 광치료, 바이오센서 분야에서도 큰 기여를 할 수 있을 것이다”라고 이번 연구의 의의를 밝혔다. 이번 연구는 스마트 IT융합시스템 연구단의 지원을 받아 수행되었으며, 세계적 과학 학술지인 ‘나노 에너지(Nano Energy)’에 2월 1일자로 게재되었다. □ 관련 영상 □ 그림 설명 그림1. 이번 기술을 이용해 제작한 마이크로 LED 그림2. 유연한 수직형 마이크로 LED의 구조 그림3. 유연한 수직형 마이크로 LED를 활용한 광유전학적 쥐의 행동 제어 실험 개략도 그림4. 이방성 도전 필름을 활용한 전사 및 패키징 기술 개략도
2018.01.29
조회수 16325
김상욱 교수, 카메라 플래시로 7나노미터 반도체 패턴 제작 기술 개발
〈 김상욱 교수, 진형민 연구원 〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 카메라의 플래시를 이용해 반도체를 제작하는 기술을 개발했다. 이 기술은 반도체용 7나노미터 패턴 기법으로 한 번의 플래시를 조사하는 것만으로 대면적에서 초미세 패턴을 제작할 수 있다. 향후 고효율, 고집적 반도체 소자 제작 등에 활용 가능할 것으로 기대된다. 진형민 연구원, 박대용 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 8월 21일자 온라인 판에 게재됐다. 4차 산업혁명의 주요 요소인 인공지능, 사물인터넷, 빅데이터 등의 기술에는 고용량, 고성능 반도체 소자가 핵심적으로 필요하다. 이러한 차세대 고집적 반도체 소자를 만들기 위해서는 패턴을 매우 작게 형성하는 리소그래피(Lithography) 기술의 개발이 필수적이다. 현재 관련 업계에서는 작은 패턴 제작에 주로 광 리소그래피(Photolithograph) 기술을 이용하고 있다. 하지만 이 기술은 10나노미터 이하의 패턴을 형성하기엔 한계가 있다. 고분자를 이용한 분자조립 패턴 기술은 공정비용이 저렴하고 10나노미터 이하 패턴 형성이 가능해 광 리소그래피를 대신할 차세대 기술로 각광받고 있다. 그러나 고온 열처리나 유독성 증기 처리에 시간이 많이 소요되기 때문에 대량 생산이 어려워 상용화에 한계가 있다. 연구팀은 고분자 분자조립 패턴 기술의 문제 해결을 위해 순간적으로 강한 빛을 내는 카메라 플래시를 활용했다. 플래시 빛을 이용하면 15 밀리 초(1밀리 초 : 천분의 1초) 내에 7나노미터의 반도체 패턴을 구현할 수 있고, 대면적에서 수십 밀리 초의 짧은 시간 내에 수 백도의 고온을 낼 수 있다. 연구팀은 이 기술을 고분자 분자 조립에 응용해 단 한 번의 플래시를 조사하는 것으로 분자 조립 패턴을 형성할 수 있음을 증명했다. 또한 연구팀은 고온 열처리 공정이 불가능한 고분자 유연 기판에도 적용이 가능함을 확인했다. 이를 통해 차세대 유연 반도체 제작에 응용할 수 있을 것으로 보인다. 연구팀은 카메라 플래시 광열 공정을 분자 조립 기술에 도입해 분자 조립 반도체기술의 실현을 앞당길 수 있는 고효율의 기술이라고 밝혔다. 연구를 주도한 김상욱 교수는 “분자조립 반도체 기술은 그 잠재성에도 불구하고 공정효율 제고가 큰 숙제로 남아 있었다”며 “이번 기술은 분자조립기반 반도체의 실용화에 획기적 해결책이 될 것이다”고 말했다. 신소재공학과 이건재 교수, 부산대학교 재료공학과 김광호 교수와의 공동으로 진행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 플래시 광을 이용한 반도체 패턴 형성 사진2. 플래시 광을 이용한 분자조립 패턴 형성 모식도 사진3. 다양한 가이드 패턴을 이용한 자기조립 패턴 제어와 고분자 유연기판에서의 플래시 자기조립 패턴 형성
2017.09.13
조회수 16468
제7회 KINC 융합연구상 시상식 개최
(왼쪽부터) 이도창 생명화학공학과 교수, 배병수 신소재공학과 교수, 정희태 나노융합연구소 소장, 정후영 UNIST 교수, 윤다은 생명화학공학과 박사과정, 김회윤 신소재공학과 박사과정, 최성율 전기및전자공학부 교수, 이건재 신소재공학과 교수 우리 대학 나노융합연구소(소장 정희태)는 본교 KI빌딩에서 교수님들의 융합연구를 장려하고 대학원생 및 연구원들의 연구 의욕 고취를 위한 '제7회 KINC 융합연구상 시상식' 을 22일(수) 개최했다. 올해로 일곱 번째를 맞이하는 시상식은 연구자의 노고를 격려하고, 우수 연구로 선정된 연구 성과를 구성원들과 함께 공유함으로써 융합연구 분위기를 활성화 시키자는 취지로 마련되었다. KINC 융합연구상은 공모를 통해 접수된 논문을 대상으로 창의성과 융합성이 가장 우수한 논문 2편을 선정하여 논문에 참여한 공동 제1저자와 교신저자에게 각각 상패와 상금을 수여한다. 첫 번째 수상 팀은 고온 및 고습에 견딜 수 있는 퀀텀닷 기술을 개발한 신소재공학과 배병수 교수, 생명화학공학과 이도창 교수 연구팀으로, 연구 결과는 화학분야의 권위 있는 국제 학술지인 ‘미국화학회 학회지(Journal of the American Chemical Society, JACS)’ 2016년 12월 21일자에 게재됐다. 두 번째 수상 팀은 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝힌 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀으로, 연구결과는 자연과학 및 응용과학 분야 세계적인 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 2016년 11월 30일자에 게재됐다. 정희태 소장은 “세계적으로 인정받는 우수한 연구 성과들이 많이 도출되어 매우 기쁘며, 교내 융합연구의 발전적인 연구 환경을 조성하기 위하여 앞으로 행사를 더욱 확대해 나갈 계획이다.”라고 뜻을 밝혔다. ※ KAIST 나노융합연구소는 나노과학기술분야에 대해 학과간의 경계를 허물고 진정한 학제 간 공동연구를 촉진하여 창조적인 융합연구를 추진하기 위해 지난 2006년 6월 KAIST 연구원 산하에 설립되었다. 현재 나노융합연구소에서는 총 85명의 겸임교수가 참여하고 있으며, 최근에는 나노연구의 미래 이슈와 KAIST 경쟁력을 고려하여 재설정한 중점 연구 분야의 연구역량을 결집하여 연구를 수행하면서 세계 최고 수준의 나노융합연구 허브 대학연구소로 성장해 나가고 있다.
2017.03.22
조회수 18526
조병진, 이건재 교수, 레이저빔 공정을 이용한 고성능 유연 열전소자 개발
우리 대학 전기및전자공학부 조병진 교수와 신소재공학과 이건재 교수 공동 연구팀이 전자기기의 전력공급원으로 사용될 수 있는 고성능 유연 열전 소자를 개발했다. 김선진 박사와 이한얼 박사과정이 공동 1저자로 참여한 이번 연구는 나노 및 에너지소재 분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 27일자에 게재됐다. 연구팀은 쿼츠 기판위에 스크린 프린팅 공정으로 열전 후막을 형성한 후 레이저빔 공정을 이용해 단단한 쿼츠 기판을 제거함으로써 쉽게 휘어지는 유연 열전 소자를 개발했다. 기존 상용 열전소자 양면에는 단단하고 무거운 세라믹 기판이 있어 휘어지지 않고 중량이 무거운 단점이 있었다. 따라서 굴곡이 있는 열원에 열전소자를 부착하여 사용하기 어려웠으며 활용이 매우 제한적이었다. 연구팀은 레이저빔을 열전소자 양면에 조사해 딱딱한 기판을 완전히 분리시키는 공정을 개발했다. 레이저빔을 이용한 기판 박리기술은 30 ns (ns : 10억분의 1초)의 매우 짧은 시간의 레이저빔을 조사하기 때문에 지난 2014년 동연구실에서 발표한 니켈박리 기술 (논문명: Wearable Thermoelectric Generator Fabricated on Glass Fabric) 보다 간편하고 공정 안전성이 매우 높다. 레이저를 이용한 기판 박리 공정기술을 개발함으로써 기존의 기판에서 발생하는 열에너지 손실문제를 개선함과 동시에 열전소자의 경량화와 유연화를 동시에 달성했다. 또한 스크린 프린팅으로 형성되는 열전후막 공정의 최적화를 통해 유연열전소자의 성능을 더욱 개선했다. 연구팀이 시험 개발한 유연 열전소자는 온도차 25 ֯C에서 단위 면적당 발전량 4.78 mW/cm2, 단위 무게당 발전량 20.8 mW/g로 최근 보고된 프린팅 기반 유연열전소자 중 가장 높은 전력밀도를 갖는다. 유연 열전소자는 잘 휘어지는 특성 때문에 굴곡이 있는 열원에 쉽게 부착해 여분의 전기에너지를 생산해 낼 수 있고 열이 발생하는 다양한 곳에 광범위하게 활용할 수 있다. 인체, 자동차, 항공기, 발전소, 산업현장 등 열이 발생하는 다양한 곳에 적용하여 여분의 전기에너지를 생산할 수 있기 때문에 그 활용성이 매우 넓다. 일례로 따뜻한 물이 흐르는 수도관 외부에 유연 열전소자를 부착하게 되면 물에서 발생하는 열을 이용해 전기에너지를 생산해 낼 수 있고, 무선 전자기기(wireless electronic device)를 동작 시킬 수 있다. 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 선도연구센터지원사업의 지원으로 수행됐다. □ 그림 설명 그림1. 레이저 멀티스캔 박리 공정으로 제작된 유연 열전소자
2017.01.23
조회수 14318
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다. 기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다. 연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다. 특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다. 연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다. 이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다. 최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다. 이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다. □ 그림 설명 그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도 그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼 그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 16947
이건재 교수, 유연고집적회로의 연속적패키징 기술 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수와 한국기계연구원 김재현 박사 공동 연구팀이 롤 기반 공정을 통해 플렉서블 기기의 핵심기술인 유연 고집적회로를 연속적으로 패키징(소자와 전자기기를 연결하는 전기적 포장) 및 전사(轉寫)할 수 있는 기술을 개발했다. 또한 개발된 롤 기반 전사 및 패키징 기술을 유연 낸드플래시 메모리(전원이 끊겨도 저장된 데이터를 잃어버리지 않는 비휘발성 메모리의 일종)에 적용하는데 성공했다. 이번 연구 결과는 재료과학 분야 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 20일자 온라인 판에 게재됐다. 롤 공정(유연기판을 회전하는 롤에 감으며 동시에 공정을 진행하는 방식) 기반의 유연전자 생산기술은 높은 생산효율을 바탕으로 웨어러블 및 플렉서블 기기 상용화에 중요한 역할을 할 것으로 기대되고 있다. 그러나 지금까지는 고집적회로를 롤 공정으로 구현하는 방법 및 주변회로와 상호 연결하는 패키징 기술이 해결되지 않아 실용화에 한계가 있었다. 문제 해결을 위해 연구팀은 기존 반도체 공정을 이용해 실리콘 기판에 낸드 플래시 메모리를 형성한 후 수백 나노미터(10분의 1m) 두께로 얇게 만들었다. 그 후 개발한 롤 기반 전사 및 패키징 기술을 통해 소자를 유연기판에 옮기는 동시에 이방성 전도 필름을 이용해 상호 연결하는 기술을 구현했다. 연구팀의 최종적인 실리콘 기반 유연 낸드플래시 메모리는 반복적인 휘어짐에도 모든 기능이 정상적으로 동작했고 외부와의 상호연결도 매우 안정적으로 유지됐다. 개발된 롤 기반 유연 고집적회로 기술은 유연 어플리케이션 프로세서(AP), 고집적 메모리, 고속 통신소자 등의 양산에 응용 가능할 것으로 기대된다. 이 교수는 “높은 생산성을 지닌 롤 기반 전사 기술을 이용해 단결정 실리콘 박막 고집적회로를 유연한 인쇄회로 기판 위에 패키징하는 생산기술을 확보했다”며 “향후 유연 디스플레이 및 배터리 기술과 함께 휘어지는 컴퓨터 구현의 핵심 생산 기술이 될 것으로 기대된다”고 말했다. 김재현 박사는 “한국기계연구원이 보유한 롤 기반 전사 기술을 이용해 단결정 실리콘 고집적소자를 유연한 폴리머 인쇄회로 기판 상에 손상 없이 전사함과 동시에 소자와 인쇄회로기판이 전기적으로 연결되도록 하는 롤 기반의 생산 공정 기술을 개발하였다”며 “이 기술은 향후 고성능 전자 소자를 유연 기판 위에 형성해 사물인터넷 및 웨어러블용 고성능 전자기기를 제조하는 핵심 생산 기술이 될 것으로 전망한다.”라고 말했다. 이건재 교수는 2013년도에 0.18 씨모스(CMOS) 공정기반으로 컴퓨터의 두뇌에 해당하는 휘어지는 유연 고집적회로를 최초로 구현했다. 특히 반도체분야 최고 권위학회인 국제반도체소자학회(IEDM)에서 초청받아 발표하는 등 세계적인 주목을 받았다. 한국기계연구원 김재현 박사 연구팀은 2009년부터 롤 스탬프를 이용해 박막소자를 옮기는 기술을 연구하고 있다. 관련 롤 전사 장비 기술을 디스플레이 및 반도체 용도의 롤 장비 회사에 기술이전하기도 했다. 이번 연구는 2013년부터 진행된 한국기계연구원의 나노소재 응용 고성능 유연소자기술 기반구축사업의 일환으로 수행됐다. 이건재 교수는 교원창업을 통해 유연한 고집적회로 관련 기술 상용화를 계획 중이다. □ 그림 설명 그림1. 연속 롤-패키징 공정의 개요 모식도 그림2. 제작된 유연 실리콘 낸드 플래시메모리
2016.09.01
조회수 15029
이건재 교수, 반도체학회 IEDM, ISSCC 초청강연
〈이 건 재 교수〉 우리 대학 신소재공학과 이건재 교수가 휘어지는 낸드플래시 메모리를 개발하여 반도체분야 세계 최고 권위학회인 국제반도체소자학회(IEDM)와 국제고체회로소자회의(ISSCC)에 초청받아 강연을 한다. 올해 12월과 내년 2월 미국에서 개최되는 IEDM과 ISSCC는 반도체소자 및 회로분야의 최고권위 학회이며, 해당 학회에 발표되는 논문 수가 그 국가의 반도체 기술수준을 평가하는 지표가 되기도 한다. 세계 유수의 반도체 회사들이 최첨단 기술을 발표하는 두 학회 모두에 국내 교수가 초청된 것은 이례적인 일이다. 이건재 교수는 2013년도에 휘어지는 컴퓨터의 핵심 부품인 유연한 고집적 회로를 0.18 마이크로미터(µm) CMOS 공정으로 구현해 세계적으로 큰 주목을 받았다. 이번 강연에서는 모바일 기기의 핵심 저장장치인 낸드플래시 메모리를 유연하게 제작하고, 이를 플라스틱 기판에 접속하는 기술을 개발함으로서 세계 최초로 패키징이 완성된 유연한 낸드플래시 메모리에 대해 발표할 예정이다. 낸드플래시 메모리는 스마트폰, 태블릿PC, 노트북 등 모바일 기기의 핵심 저장장치로 차세대 휘어지는 컴퓨터의 핵심 부품이다. 연구팀은 플래시메모리를 실리콘 기판에 형성 후 수백 나노미터 두께(머리카락 굵기의 천분의 일)의 메모리 회로만 남겨두고 기판 아랫부분을 화학적인 방법으로 제거해 유연한 낸드플래시 메모리를 구현했다. 또한 휘어지는 메모리를 상용화하기 위해서는 유연 기판에 전기적으로 연결하는 패키징 기술이 필요한데, 연구팀은 이방성전도필름과 플림칩 패키징 기술을 유연한 낸드플래시 메모리에 적용하는 데 성공했다. 이 교수는 “이번에 개발된 유연한 낸드플래시 메모리는 심하게 휘어진 상태에서도 모든 기능이 안정적으로 동작했으며, 기존 실리콘 기반의 반도체 공정을 활용함으로서 다양한 웨어러블 컴퓨터에 쓰일 수 있을 것이다” 고 말했다. 한편 이번 연구결과는 2015 IEDM 과학저널에 게재될 예정이며, 상용화를 위해 KAIST 교원창업을 진행 중이다. □ 그림 설명 그림1. 패키징이 완성된 유연 낸드 플래쉬 메모리의 모식도
2015.11.26
조회수 11437
고효율 나노발전기 상용화길 열어
아주 작은 움직임으로도 전기를 생산하는 나노발전기가 개발됐다. 몸에 붙이고 다니면 충전되는 웨어러블 전자기기 전력원 등 다양한 활용이 기대된다. 우리 학교 신소재공학과 이건재 교수팀은 레이저 박리 전사기술과 유연한 압전박막 소재를 활용해 기존보다 약 40배 높은 효율을 갖는 나노발전기 개발에 성공했다. 연구결과는 세계적 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 4월 23일자 표지논문으로 게재됐다. 나노발전기는 유연한 나노소재에 미세한 압력이나 구부러짐이 가해질 때 전기 에너지가 생성되는 기술이다. 전선과 배터리 없이도 에너지공급이 가능하기 때문에 휘어지는 전자제품은 물론 심장 박동기와 같이 몸속에 집어넣는 기기나 로봇의 에너지원으로도 활용 가능하다. 그러나 지금까지는 에너지 효율이 낮고 제작공정이 복잡해 상용화가 어려웠다. 이 교수 연구팀은 고온에서 결정화된 고효율 압전박막물질을 현재 상용화된 레이저 박리기술을 이용해 딱딱한 기판에서 플라스틱 기판으로 전사, 효율을 크게 향상시키면서도 대면적으로 양산 가능성을 높였다. 이번에 개발된 유연한 기판(2cm × 2cm)에 만들어진 나노발전기는 미세한 구부림에 의해 생성된 에너지(250V, 8㎂)로 105개의 LED를 작동시키는데 성공했다. 이 교수는 “이번에 개발된 고효율의 나노발전기술은 자연에서 발생하는 바람, 진동, 소리와 같은 미세한 에너지는 물론 심장박동, 혈액흐름, 근육수축·이완 등 사람 몸에서 발생되는 생체역학적 힘을 이용해 전기를 생산할 수 있는 무한 에너지원으로 사용될 수 있다”고 응용가능성에 대해 설명했다. 이와 함께 “발전효율이 세계최고기록보다 40여배 높고 대량 양산이 가능한 레이저 박리기술을 활용해 그동안 상용화를 가로막았던 저효율과 복잡한 제조공정의 문제점을 해결했다는데 큰 의의가 있다”고 말했다. 이 교수팀은 향후 압전박막물질을 삼차원으로 적층해 생성전력을 더욱 높이고 이를 동물에 이식하는 생체실험을 수행할 계획이다. 이번 연구결과는 미래창조과학부 도약연구사업과 ‘코오롱-카이스트 라이프스타일 이노베이션센터(KOLON-KAIST LifeStyle Innovation Center)’의 지원으로 수행됐다. 그림1. 레이저 박리 기술로 제작된 대면적 형태의 나노발전기 이미지(논문표지) 그림2. 플라스틱에 제작된 나노발전기에서 생성된 전력을 이용해 105개의 LED를 작동하는 모습
2014.05.15
조회수 16747
바이러스를 이용한 친환경 나노발전기 개발
- 자연계의 생체 합성 능력을 모방해 만든 신물질로 나노발전기 개발 - 우리 학교 신소재공학과 이건재(38)·남윤성(40) 교수 공동연구팀은 유전자 조작 바이러스를 이용해 유연한 압전 나노발전기를 만드는데 성공했다. 연구결과는 나노 및 에너지 분야의 세계적 학술지 ‘ACS Nano’ 온라인판(11월 14일자)에 게재됐으며, 대면적 저비용 제작에도 성공해 ‘어드밴스드 에너지 머티리얼스(Advanced Energy Materials)’ 12월호 표지논문으로 선정되기도 했다. 조개껍질, 해면, 뼈 등에서 볼 수 있듯이 자연계는 인간이 만들기 어려운 여러 가지 물질이나 구조를 스스로 합성하고 조립하는 능력을 가지고 있다. 예를 들어, 자연계의 조개껍질은 매우 단단한 반면 같은 물질이지만 인공 합성물인 분필은 쉽게 부서진다. 게다가 기존의 여러 인공 합성법들은 독성이 많고 극한적인 환경에서 이뤄진다는 것에 비해 이러한 자연적인 합성은 매우 신비하고 주목할 만한 현상이다. 이처럼 생물들이 가지고 있는 자연적 물질 합성을 모방하면 과학기술 분야에서 효율적으로 환경문제를 해결하거나 신물질을 개발할 수 있다. 연구팀은 자연계에 대량으로 존재하면서 인체에는 무해한 M13이라는 바이러스 유전자를 조작하고, 이 바이러스의 특징을 이용해 압전 효과가 우수한 티탄산바륨(BaTiO3)을 합성함으로써 유연한 압전 나노발전기를 만드는데 성공했다. 나노발전기란 기계적인 힘을 가하면 전기가 생성되는 압전(piezoelectricity) 현상을 응용해 만든 에너지를 얻는 소자다. 연구팀은 이번에 손가락의 움직임으로도 전기에너지를 생산해 LED를 구동하는데 성공했다. 남윤성 교수는 “이번에 개발된 나노발전기는 DNA 조작이 생명체의 변형을 뛰어넘어 전자소자까지 제어할 수 있다는 새로운 발상의 전환을 보여주는 것”이라며 “뛰어난 압전특성과 친환경적인 제조공정은 이러한 접근법이 얼마나 매력적인지를 잘 보여준다”고 연구의 의의를 설명했다. ㅁ 그림설명 바이러스 구조를 이용한 티탄산바륨 합성 및 나노발전기 모식도(첫째 줄), 바이러스와 이를 이용한 티탄산바륨 나노물질의 전자현미경 사진 및 구현된 유연한 나노발전기와 소자 (LED) 구동 모습(둘째 줄)
2013.12.10
조회수 19410
휘어지는 고집적 반도체회로 구현
- 차세대 유연 스마트기기의 두뇌 상용화 길 열어 - 우리 학교 신소재공학과 이건재 교수팀이 입는 컴퓨터 및 플렉시블 디스플레이에서 가장 핵심적인 역할을 하는 유연한 고집적회로(LSI)를 구현하는데 성공했다. 자유롭게 휘어지는 스마트폰과 컴퓨터를 제작하기 위해서는 높은 집적도의 반도체회로, 즉 모바일 기기의 두뇌인 애플리케이션 프로세서(AP), 고용량 메모리 및 무선통신소자의 유연화가 필수적이다. 지금까지 플렉시블 디스플레이 구동에 필요한 박막트랜지스터(TFT)와 여러 유연소재들을 개발하는 연구는 활발히 진행되고 있다. 그러나 수천 개 이상의 고성능 나노반도체를 연결해 대량의 정보를 처리하고 저장할 수 있는 유연 고집적회로를 제작하지 못했다. 따라서 전체가 자유자재로 휘어지는 유연한 스마트기기 등 입을 수 있는 컴퓨터의 상용화에 어려움이 있었다. 이건재 교수팀은 고집적 무선통신소자를 단결정 실리콘에 형성한 뒤 100nm(나노미터) 두께의 매우 얇은 실리콘 칩의 회로를 뜯어내 플라스틱 기판위에 안정적으로 옮김으로써, 자유자재로 구부릴 수 있는 반도체회로를 구현했다. 이건재 교수는 “이번에 나노두께의 얇은 실리콘 소재로 개발한 반도체회로는 유연하면서도 고집적 고성능을 유지할 수 있고, 곧 상용화될 플렉시블 전자소자에 적용될 수 있을 뿐만 아니라, 인체 친화적 유연한 액정폴리머 소재위에 구현하였기 때문에 인체내부의 좁고 굴곡진 틈에 삽입할 수 있어서, 최근 미국 FDA가 승인한 인공망막의 통신 및 정보처리 기기에 적용하는 등 삶의 질을 향상시키는 데에도 기여할 수 있을 것이다"라고 말했다. 또한 이번 연구의 공저자로 참여한 KAIST 전기및전자공학과 이귀로 교수(나노종합기술원 원장)는 “이번성과는 세계 500조 규모의 반도체 및 디스플레이 시장에서 휘어지는 유연 고집적 회로로 패러다임이 바뀌는 시기에 개발된 핵심 원천기술”이라며 “향후 상용화를 위한 정부의 지원이 뒷받침 된다면 세계 시장에서 앞서가고 있는 한국 스마트폰, 반도체, 디스플레이 산업을 한 단계 더 업그레이드시켜 미래 먹거리로써 창조경제에도 이바지할 수 있을 것”이라고 평가했다. 이건재 교수는 현재 나노종합기술원, 한국기계연구원과 공동으로 이번 연구 결과물인 고집적 유연 반도체 회로를 롤투롤(Roll-to-Roll) 방식으로 양산하는 연구를 계획하고 있다. 한편, 이번 연구는 미국 화학회가 발행하는 나노과학기술(NT) 분야의 세계적 권위지인 ACS Nano 4월 25일자 온라인 판에 게재됐다. 휘어지는 고집적 반도체회로의 모습(좌), 얇고 유연한 고집적 통신소자를 적용한 인공망막의 모습(우) 유튜브 링크:http://www.youtube.com/watch?v=5PpbM7m2PPs&feature=youtu.be
2013.05.07
조회수 15144
휘어지는 고성능 배터리 제작기술 개발
- 플렉시블 OLED 디스플레이와 배터리의 완전 결합길 열려 - 휘어지는 디스플레이의 에너지원으로 반드시 필요한 고효율 유연 배터리를 KAIST 연구진이 세계 최초로 개발하는데 성공했다. 우리 학교 신소재공학과 이건재 교수팀이 유연한 고효율 배터리를 개발하는데 성공, 이 연구결과가 재료분야 세계적 학술지인 ‘나노 레터스(Nano Letters)’ 8월호 온라인판에 실렸으며, 미국 화학학회 뉴스레터인 C&EN(Chemical & Engineering News)에도 (8월 10일자) 특집으로 보도됐다. 얇고 가벼우면서도 유연한 디스플레이로의 혁신적인 기술 발전을 위해서는 필연적으로 휘어지며 충전밀도가 높고, 폭발위험이 극히 적은 고성능 유연 고상배터리의 개발이 요구돼 왔다. 그러나 고효율 배터리를 만드는 소재 중 산화물 양극재료는 고온의 열처리가 필요하기 때문에 플라스틱 기판위에서는 구현할 수 없을 뿐만 아니라 고온 열처리 없이 분말 형태로 만들 경우에는 충전밀도가 매우 낮다는 문제점이 있었다. 이번에 개발한 고성능 유연 고상배터리는 리튬코발트산화물(LiCoO2) 양극재료를 운모 희생기판에서 4㎛(머리카락의 약 10분의 1 두께) 정도인 박막형태로 고온 성장시켜 만든 후, 기판으로 쓰인 딱딱한 희생기판을 제거해 얇은 배터리 부분만 남긴 후 유연한 기판위에 전사해 완성했다. 이 교수 연구팀이 개발에 성공한 유연 배터리는 휘어지더라도 전압이 3.9~4.2V로 거의 변하지 않고, 충·방전 10,000번(방전심도 80%) 정도의 안정적 작동과 함께 2200㎼h/㎤의 높은 에너지밀도(패키징 포함)를 지닌 게 큰 특징이다. 이번 연구를 주도한 구민 박사는 “충전밀도가 높은 박막형태의 고효율 유연 배터리는 완전한 형태의 유연 전자 제품를 만드는 데 획기적인 역할을 할 것”이라고 말했다. 이건재 교수 연구팀은 현재 대량생산을 위한 레이저 리프트 오프(Laser lift-off) 기술과 충전용량을 높이기 위해 삼차원으로 적층하는 후속 연구를 진행 중인데, 이들 연구가 끝나는 대로 상용화 수준의 유연 배터리가 나올 것으로 이 교수 연구팀은 예상하고 있다. 한편, 이번 연구결과는 지난 13일부터 일주일간 미국에서 열린 세계적인 국제학회인 국제광자공학회(SPIE)에서 이건재 교수가 기조강연으로 발표했으며, 국내외에서 다수의 특허를 등록하거나 출원했다. <동영상 설명>http://www.youtube.com/watch?v=Sh-SkpCZ4AE&feature=player_embedded굽힘 상태에서 상용 블루 LED를 켜며 전압특성이 유지되는 유연 배터리 모습 그림1. 연구팀이 이번에 개발한 유연한 배터리와 기존의 휘어지는 OLED를 결합해 만든 최초의 완전한 플렉시블 디스플레이 그림2. 연구팀이 개발한 플렉시블 배터리와 결합된 디스플레이의 구조 그림3. 연구팀이 개발한 휘어지는 배터리가 LED를 켜고 있다. 휘어져도 전압이 떨어지지 않아 안정적이다. 그림4. 휘어지는 고효율 배터리 제작공정. (g)운모를 제거하고 나서 (h)폴리머 기판으로 옮긴 후 (i)폴리머로 감싸는 공정이 연구팀의 독자기술이다. 그림5. 이건재 교수 연구팀이 유연배터리를 희생기판에서 레이저로 제거하는 연구를 수행하고 있다.
2012.08.21
조회수 16369
신개념 나노발전기 원천기술 개발
- 나노복합체 이용해 복잡한 공정과 고비용 문제 해결 -- 어드밴스드 머터리얼스 6월호 표지논문 게재 - 우리 학교 연구진이 나노복합체를 이용해 나노발전기를 적은 비용으로도 대면적으로 만들 수 있는 원천기술 개발에 성공했다. 우리 대학 신소재공학과 이건재 교수 연구팀이 나노복합체를 이용한 신개념 나노발전기 원천기술을 개발해 재료분야 세계적 학술지인 ‘어드밴스드 머터리얼스(Advanced Materials)’ 6월호 표지논문에 게재됐다. 이번에 개발된 기술은 간단한 코팅 공정을 통해 만들어 비용을 획기적으로 줄일 수 있을 뿐만 아니라, 넓은 면적도 쉽게 제작 가능해 공정이 복잡했던 기존의 한계를 극복해냈다는 평가를 받고 있다. 나노발전기는 나노 크기(10억분의 1m)의 물질을 사용해 전기를 생산하는 발전기로, 압전 물질에 압력이나 구부러짐 등과 같은 물리적 힘이 가해질 때 전기가 발생하는 특성인 ‘압전 효과’를 이용한다. 압전 효과를 이용하는 발전기술은 2009년 MIT가 선정한 10대 유망기술에 선정됐으며, 2010년 미국의 유명한 과학월간지 파퓰러사이언스(Popular Science)가 선정한 세계를 뒤흔들 45가지 혁신기술에 포함되기도 했다. 나노발전기 개발을 위한 압전 물질은 2005년 미국 조지아공대 왕중린 교수팀이 세계 처음으로 나노발전기 개념을 제시하면서 적용한 ‘산화아연(ZnO)’이 유일했다. 2010년 KAIST 신소재공학과 이건재 교수 연구팀은 산화아연보다 15~20배 높은 압전 특성을 갖고 있는 세라믹 박막물질인 ‘티탄산화바륨(BaTiO3)’을 이용해 나노발전기 효율을 한층 업그레이드 시킨데 이어, 이번에는 나노복합체를 이용해 간단한 공정으로 제작하는 데 성공해 적은 비용으로도 넓은 면적의 나노발전기를 구현해낼 수 있게 됐다. 연구팀은 수백 나노 크기의 고효율 압전 나노입자인 ‘티탄산화바륨’과 비표면적이 크고 전기 전도성이 높은 ‘탄소나노튜브’ 또는 ‘산화 그래핀(RGO)’을 폴리머(polydimethylsiloxane, PDMS)와 섞은 후 간단한 코팅공정을 통해 넓은 면적의 나노발전기 제작에 성공했다. 이건재 교수는 “압전효과를 바탕으로 한 ‘나노자가발전 기술’은 적은 기계적 힘만으로도 전기를 생산할 수 있어 차세대 에너지 기술로 각광을 받고 있지만, 기존 기술은 제작공정이 복잡하고 고가의 비용문제 및 소자크기의 한계성을 극복하지 못했다”고 말했다. 아울러 “이번에 개발된 기술에 패키징 및 충·방전 기술을 융합하면, 반영구적으로 자가발전 및 저장이 가능한 새로운 형태의 에너지 시스템 개발에 응용될 수 있다“고 덧붙였다. 한편, 이번 기술은 해외 1건, 국내 2건의 특허가 출원 및 등록됐다. <동영상>http://www.youtube.com/watch?v=90rk7G3t30k&feature=player_embedded 압전 나노복합체 제작공정과 소자를 다양한 방법으로 구부릴 때마다 전기가 발생하는 것을 보여주는 동영상 ※응용사례 - 에너지블럭(부산 서면역 적용) 지하철 선로에 압전소자를 적용해 전동차 운행으로 얻어지는 진동을 통해 발전하는 장치로 국내 최초의 압전에너지 상용화 제품http://blog.naver.com/ioyou64?Redirect=Log&logNo=130093513496 - 이스라엘은 고속도로에 압전발전기를 적용해 발생되는 전기로 가로등을 밝히고 있음 - 필립스는 사람이 리모컨 버튼을 누르는 힘만으로 전기를 생산해 배터리가 없어도 작동되는 리모컨 개발 - 수 많은 나노 발전기를 겹쳐 옷감 형태로 만든 재킷을 입으면 단순히 걷는 것과 같은 일상생활만으로도 휴대전화나 MP3 등을 충전할 수 있을 것으로 예상됨 - 아주 작은 전원만으로도 몸속에서 독자적인 임무를 수행하는 나노센서 개발가능 ※그림설명 그림1. 압전 나노입자를 포함하는 복합물질에서 구부림에 의해 전기가 생성되는 것을 보여주는 그림. 그림2. 구부러질 때마다 전기를 만드는 나노복합체 기반의 자가발전기(논문표지)
2012.06.12
조회수 17019
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3