-
사물인터넷(IoT)을 위한 무전원 인터넷 연결 기술 개발
우리 대학 연구진이 초저전력, 저비용으로 우리 생활의 모든 사물을 연결하는 사물인터넷(IoT, Internet of Things) 서비스를 광범위하게 제공하는 핵심 기술을 개발해 초연결 사회 구현을 한층 앞당길 수 있을 것으로 기대된다. 사물인터넷이란 각종 사물이 센서와 통신기기를 통해 서로 연결돼 양방향으로 소통함으로써 개별 객체로는 제공하지 못했던 서비스를 제공하는 기술이다.
전기및전자공학부 김성민, 이융 교수와 정진환 박사과정, 한국뉴욕주립대 류지훈 교수(컴퓨터과학과)가 참여한 공동 연구팀은 후방산란(Backscattering) 기술을 이용한 무전원 사물인터넷 게이트웨이 개발에 성공했다고 13일 밝혔다.
후방산란 기술이란 기기의 무선 신호를 직접 만들어내지 않고, 공중에 존재하는 방사된 신호를 반사해 정보를 전달하는 방식의 기술이다. 무선 신호를 생성하는데 전력을 소모하지 않아 초저전력으로 통신을 가능케 하는 기술이다.
김성민 교수 연구팀은 이러한 초저전력 후방산란 기술을 이용해 사물인터넷 기기들이 방사하는 무선 사물인터넷 신호가 와이파이(WiFi) 신호로 공중에서 변조되도록 설계했다. 후방산란 기술 기반의 무전원 게이트웨이를 이용하면 사물인터넷 기기를 와이파이 네트워크에 쉽게 연결할 수 있기 때문에 인터넷 연결성의 범위가 크게 확장될 것으로 기대된다.
전기및전자공학부 정진환 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 캐나다 토론토에서 열린 모바일 컴퓨팅 분야의 최고 권위 학술대회 `ACM 모비시스(ACM MobiSys) 2020'에서 발표됐다. (논문명 : Gateway over the air: Towards Pervasive Internet Connectivity for Commodity IoT).
5G 네트워크의 핵심 구성요소 중 하나인 사물인터넷은 각종 사물인터넷 기기들이 인터넷에 연결돼야만 다양한 서비스를 제공할 수 있는 구조로 돼 있다. 사물인터넷 기기들을 인터넷에 연결하기 위해서는 사물인터넷 게이트웨이라는 다수의 무선 송수신 장치를 장착하고 있는 기기가 꼭 필요하다.
사물인터넷 게이트웨이는 다수의 무선 송수신 장치에서 발생하는 전력소모량이 크기 때문에 유선 전원공급장치가 필요하다. 따라서 자유로운 설치가 제한될 수밖에 없어 광범위한 인터넷 연결성을 제공하는데 많은 제약이 따른다.
연구팀은 문제 해결을 위해 후방산란 기술을 활용해 사물인터넷 기기들이 주로 사용하는 지그비(ZigBee, 저전력 무선망 기술) 또는 BLE(Bluetooth Low Energy, 저전력 블루투스 기술) 통신 규격을 따르는 무선 신호를 최적의 패턴으로 반사해 와이파이 신호로 변조시키는 기술을 개발했다. 이 기술을 이용해 사물인터넷 기기들을 사용자 주변에 흔히 볼 수 있는 와이파이 기기에 연결함으로써 인터넷 연결성을 제공하는 무전원 사물인터넷 게이트웨이를 제작했다.
연구팀이 개발한 무전원 사물인터넷 게이트웨이 기술은 후방산란 기술을 활용해 에너지 수확(Energy harvesting)을 통해 무전원으로 동작할 수 있어 설치비용과 유지·보수 비용을 크게 줄일 수 있다. 또 후방산란의 특성상 공중에 방사된 무선 신호를 반사하면서 물리적으로 변조하므로 동일한 통신 규격을 사용하는 모든 사물인터넷 기기에 보편적으로 적용할 수 있다는 장점이 있다.
연구팀은 저전력 통신 규격인 지그비와 BLE 신호를 무전원 사물인터넷 게이트웨이를 통해 와이파이 신호로 변조해 상용 노트북에서 수신됨을 확인했다. 이와 함께 다양한 제작사에서 판매하는 상용 스마트홈 기기(스마트 전구, 스마트 스피커 등)가 사물인터넷 게이트웨이를 통해 와이파이 기기에 상호 연결되는 현상을 실험을 통해 입증함으로써 통합형 사물인터넷 게이트웨이로서의 가능성도 확인했다.
제1 저자인 정진환 연구원은 "후방산란이라는 초저전력 통신 기술을 통해 상용 사물인터넷 기기들이 매우 적은 비용으로 와이파이를 통해 인터넷에 연결될 수 있다는 점을 확인했다ˮ면서 "값비싸고 전력소모량이 큰 기존의 사물인터넷 게이트웨이의 한계를 무전원 사물인터넷 게이트웨이로 극복할 수 있다는 점을 확인한 게 이번 연구의 성과ˮ라고 설명했다.
정 연구원은 이어 "향후 끊임없이 규모가 커질 사물인터넷에 대해 효율적으로 인터넷 연결성을 확대, 제공하는 방향으로 활용이 가능할 것으로 기대가 크다ˮ고 말했다.
한편 이번 연구는 한국연구재단과 정보통신기획평가원의 지원을 받아 수행됐다.
2020.07.13
조회수 20623
-
기존 인공지능 기술을 뛰어넘는 양자 인공지능 알고리즘 개발
우리 대학 전기및전자공학부 및 AI 양자컴퓨팅 IT 인력양성연구센터장 이준구 교수 연구팀이 독일 및 남아공 연구팀과의 협력 연구를 통해 비선형 양자 기계학습 인공지능 알고리즘을 개발했다고 7일 밝혔다.
양자 인공지능은 양자컴퓨터의 발전과 함께 현재의 인공지능을 앞설 것으로 크게 기대되고 있으나 연산 방법이 전혀 달라 새로운 양자 알고리즘의 개발이 절실하다. 특히 양자컴퓨터는 본질적으로 일차방정식을 잘 푸는 선형적 성질을 가지고 있어 복잡한 데이터를 다루는 비선형적 기계학습에 어려움이 존재했다. 하지만 이번 연구를 통해 비선형 커널이 고안되어 복잡한 데이터에 대한 양자 기계학습이 가능하게 됐다. 특히 이준구 교수팀이 개발한 양자 지도학습 알고리즘은 학습에 있어 매우 적은 계산량으로 연산이 가능하다. 따라서 대규모 계산량이 필요한 현재의 인공지능 기술을 추월할 가능성을 제시한 것으로 평가를 받고 있다.
이준구 교수팀은 학습데이터와 테스트데이터를 양자 정보로 생성한 후 양자 정보의 병렬연산을 가능하게 하는 양자포킹 기술과 간단한 양자 측정기술을 조합해 양자 데이터 간의 유사성을 효율적으로 계산하는 비선형 커널 기반의 지도학습을 구현하는 양자 알고리즘 체계를 만들었다. 이후 IBM 클라우드 서비스를 통해 실제 양자컴퓨터에서 양자 지도학습을 실제 시연하는 데 성공했다.
KAIST 박경덕 연구교수가 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 네이처 자매지인 `npj Quantum Information' 誌 2020년 5월 6권에 게재됐다. (논문명: Quantum classifier with tailored quantum kernel).
기계학습에 있어 중요한 문제 중 하나는 주어진 데이터의 특징(feature)을 구분해 분류하는 것이다. 간단한 예로 동물 이미지 학습데이터에서 입, 귀 등의 특징을 바탕으로 분류하기 위한 결정 경계(decision boundary)를 학습하고 새로운 이미지가 입력되었을 때 개 또는 고양이로 분류하는 작업을 생각해볼 수 있다. 데이터의 특징들이 잘 나타나는 경우에는 선형적 결정 경계만으로 분류할 수 있다. 그러나 입과 귀 모양의 특징으로만 개와 고양이를 분류하기 쉽지 않다면 새로운 결정 경계를 찾기 위해 특징에 관한 정보 공간의 차원을 확장해야 하는데 이러한 과정에서 비선형 커널 기술이 필요하다.
양자컴퓨팅은 고전 컴퓨팅과는 달리 큐비트(quantum bit, 양자컴퓨팅 정보처리의 기본 단위)의 개수에 따라 정보 공간의 차원이 기하급수적으로 증가하기 때문에 이론적으로 고차원 정보처리에 있어 기하급수적으로 뛰어난 성능을 낼 수 있다.
연구팀은 이러한 양자컴퓨팅의 장점을 활용해 데이터 특징 대비 기하급수적인 계산 효율성을 달성하는 양자 기계학습 알고리즘을 개발했다. 이 교수 연구팀이 개발한 이 알고리즘은 저차원 입력 공간에 존재하는 데이터들을 큐비트로 표현되는 고차원 데이터 특징 공간(feature space)으로 옮긴 후, 양자화된 모든 학습데이터와 테스트데이터 간의 커널 함수를 양자 중첩을 활용해 동시에 계산하고 테스트데이터의 분류를 효율적으로 결정한다. 이때 사용되는 양자 회로의 계산 복잡도는 학습 데이터양에 대해서는 선형적으로 증가하나, 데이터 특징 개수에 대해서는 불과 로그(log)함수로 매우 천천히 증가하는 장점이 있다.
연구팀은 이와 함께 양자 회로의 체계적 설계를 통해 다양한 양자 커널 구현이 가능함을 이론적으로 증명했다. 커널 기반 기계학습에서는 주어진 입력 데이터에 따라 최적 커널이 달라질 수 있으므로, 다양한 양자 커널을 효율적으로 구현할 수 있게 된 점은 양자 커널 기반 기계학습의 실제 응용에 있어 매우 중요한 성과다.
연구팀은 IBM이 클라우드 서비스로 제공하는 다섯 개의 큐비트로 구성된 초전도 기반 양자 컴퓨터에서 이번에 개발에 성공한 양자 기계학습 알고리즘을 실험적으로 구현해 양자 커널 기반 기계학습의 성능을 실제 시연을 통해 이를 입증하는 데 성공했다.
이 연구에 참여한 박경덕 연구교수는 "연구팀이 개발한 커널 기반 양자 기계학습 알고리즘은 수년 안에 상용화될 것으로 예측되는 수백 큐비트의 NISQ(Noisy Intermediate-Scale Quantum) 컴퓨팅의 시대가 되면 기존의 고전 커널 기반 지도학습을 뛰어넘을 것ˮ이라면서 "복잡한 비선형 데이터의 패턴 인식 등을 위한 양자 기계학습 알고리즘으로 활발히 사용될 것ˮ이라고 말했다.
한편 이번 연구는 각각 한국연구재단의 창의 도전 연구기반 지원 사업과 한국연구재단의 한-아프리카 협력기반 조성 사업, 정보통신기획평가원의 정보통신기술인력 양성사업(ITRC)의 지원을 받아 수행됐다.
관련 논문: https://www.nature.com/articles/s41534-020-0272-6
2020.07.07
조회수 20505
-
이상엽 특훈교수팀 학생들, 천연물 생산 미생물 개발 전략 총정리
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 소속 대학원생 4명이 대장균 세포 공장을 개발해 생산된 대표 천연물들의 생합성 경로를 총망라해 최신의 연구 내용과 흐름을 한눈에 파악할 수 있도록 대사 회로를 정리한 `천연물 생산을 위한 대장균에서의 대사공학'을 주제로 논문을 발표했다.
학생들은 이번 논문에서 천연물 생산 대장균 세포 공장 개발을 위한 주요 시스템 대사공학 전략을 `효소 개량'과 `대사흐름 최적화', 그리고 `시스템 접근법' 등 3단계로 정리했으며 각 단계별로 활용이 가능한 최신 도구 및 전략을 대사공학이 나아가야 할 방향과 함께 제시했다.
양동수·박선영·은현민 박사과정과 박예슬 석사과정 학생이 참여한 이번 연구결과는 국제학술지인 셀(Cell)誌가 발행하는 생명공학 분야 권위 리뷰지인 `생명공학의 동향(Trends in Biotechnology)' 7월호(특별호: 대사공학) 표지논문 및 주 논문(Featured Article)으로 1일 게재됐다.
인류 역사에서 천연물은 식품과 의약품 등의 분야에 널리 사용되고 있는데 많은 천연물이 그 자체로 의약 물질로 쓰이거나 새로운 의약 물질 개발의 구조적인 근간이 되고 있다. 고부가가치 천연물에 대한 국제적인 수요와 시장규모는 지속적으로 증가하는 추세인 데 반해 천연자원으로부터 얻을 수 있는 양은 극히 제한적이며 완전한 화학합성은 대체로 효율이 낮고 유기 용매를 다량으로 이용하기 때문에 환경 오염과 인류 건강에 악영향을 초래할 수 있다.
따라서 전 세계적으로 천연물을 친환경적이며 고효율로 생산이 가능한 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 미생물 세포 공장 구축을 위한 핵심전략인 시스템 대사공학은 기존 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수 연구팀은 실제 시스템 대사공학 전략을 이용, 천연물·아미노산·생분해성 플라스틱·환경친화적인 플라스틱 원료와 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 성과를 거뒀다.
이들 4명의 학생을 지도한 이상엽 특훈교수는 "천연물 생산을 위한 대사공학 연구를 체계적으로 분석, 정리하고 또 향후 전략을 제시했다는 점에서 큰 의미가 있다ˮ면서 "권위가 있는 학술지에 주 논문이자 표지논문으로 게재된 이번 연구를 수행한 학생들이 자랑스럽다ˮ고 말했다.
공동 제1 저자인 양동수·박선영 박사과정 학생도 "고령화가 진행되는 사회에서 헬스케어 산업은 그 중요성이 더욱 대두되고 있다ˮ면서 "인류가 건강한 삶을 지속적으로 영위하기 위해서 필수적인 각종 천연물을 대사공학적으로 생산하는 연구 또한 갈수록 중요해질 것ˮ이라고 강조했다.
한편 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 `바이오리파이너리를 위한 시스템 대사공학 원천기술개발 과제' 및 노보 노디스크 재단의 지원을 받아 수행됐다.
2020.07.02
조회수 23495
-
유지환 교수, IEEE ICRA2020 Outstanding Reviewer Award 수상
우리 대학 건설및환경공학과 유지환 교수가 로봇분야 국제적 저명 학술대회인 IEEE ICRA(International Conference on Robotics and Automation) Outstanding Reviewer Award 수상자로 선정됐다.
시상은 2020년 5월 31일부터 온라인으로 개최된 2020년도 IEEE ICRA의 Award ceremony(6월 5일) 에서 수여됐다.
IEEE ICRA Outstanding Reviewer Award는, 세계 최대 규모의 국제 로봇학술대회인 IEEE ICRA에 출판되는 논문의 질적 향상을 위해, 건설적이고 양질의 논문심사를 제공한 심사위원을 매년 선정하여 수여하는 상으로, 올해는 예년에 비하여 약 3배정도 많은 9425명의 심사위원 가운데, 편집위원의 추천을 거쳐 유지환 교수를 포함하여 최종 4명의 수상자가 선정됐다.
2020.06.08
조회수 15830
-
제10회 KINC 융합연구상 시상식 개최
우리 대학 나노융합연구소(연구소장 정희태)는 5월 19일 본교에서 제 10회 ‘KINC 융합연구상’ 시상식을 개최했다.
‘KINC 융합연구상’은 전년도 실적을 기준으로 나노융합연구 업적이 우수한 연구자를 포상해 융합연구 분위기를 장려하고 연구 의욕을 고취하기 위해 제정됐다.
이 상은 포상을 통하여 융합연구에 대한 적극적인 참여 동기를 부여하기 위하여 2011년도 만들어졌으며, 연구 내용의 질적 수준과 연구팀의 융합성이 가장 우수한 공동 연구팀에게 주어지는 ‘최우수 융합논문’ 부문과 다양한 연구진과 공동 연구한 융합논문 실적수가 가장 많은 연구자를 선발하는 ‘최다수 융합논문’ 부문으로 나눠 시상하고 있다.
올해에는 생명화학공학과 김희탁 교수, 신소재공학과 김상욱 교수 공동 연구팀과 생명화학공학과 김범준 교수가 각각 ‘최우수 융합논문’ 부문과 ‘최다수 융합논문’ 부문의 수상자로 선정됐다.
‘최우수 융합논문’으로 선정된 이번 연구는 세계 최초 멤브레인이 필요 없는 새로운 개념의 물 기반 아연-브롬 전지 개발에 성공하며 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다. (논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides) 특히 이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구 결과는 탄소 소재에 대한 전문성과 전기화학 분석에 관한 경험을 바탕으로 두 연구팀의 융합성이 크게 돋보였다.
또한, ‘최다수 융합논문’ 부문 수상자 김범준 교수는 유기태양전지 및 고분자 합성 분야에서 교내‧외 다양한 연구진과 공동 연구한 다수의 융합논문 성과를 도출하면서 나노과학기술 발전에 크게 기여한 공로를 인정받았다.
행사를 주최한 나노융합연구소 정희태 소장(생명화학공학과 교수)은 “올해 KINC 융합연구상 시상 행사가 10회째를 맞이한 것을 매우 뜻깊게 생각한다.”며 “앞으로도 융합연구가 발전할 수 있는 연구 환경을 조성하기 위해 나노융합연구소가 앞장서겠다.”고 밝혔다.
한편, ‘나노융합연구소’는 나노과학기술분야에서 학과 간의 경계를 허물어 진정한 학제 간 공동연구를 촉진하고 창조적인 융합연구를 추진하기 위해 지난 2006년 6월 KAIST 연구원 산하 조직으로 설립되었다. KAIST의 대표적인 융합연구소로 자리 잡은 나노융합연구소는 13개 학과 약 90여 명의 교수가 참여하고 있으며, 세계를 선도하는 나노융합연구 허브대학연구소를 목표로 활발한 연구 성과를 배출하고 있다.
2020.05.19
조회수 17724
-
광 투과 방식의 웨어러블 유연 인장 센서 개발
기계공학과 박인규 교수 연구팀이 신체 동작 및 자세 모니터링에 활용이 가능한 탄소 나노튜브–탄성 중합체 복합소재 광 투과 방식의 웨어러블 유연 인장 센서를 개발했다.
이번 기술을 통해 인체의 다양한 관절 굽힘 동작, 자세, 맥박 및 표정 등 다양한 생체 동작을 연속적으로 측정해, 운동 시 관절부 움직임 자세 교정 및 맥박 측정을 통한 헬스케어 모니터링 시스템 등에 활용할 수 있을 것으로 기대된다.
구지민 박사과정이 1 저자로 참여한 이번 연구는 나노기술 분야 국제 학술지 ‘ACS Applied Materials & Interfaces’ 3월 4일 자 표지 논문에 게재됐다. (논문명: Wearable Strain Sensor Using Light Transmittance Change of Carbon Nanotube Embedded Elastomer with Microcrack)
최근 헬스케어에 대한 관심이 커짐에 따라 웨어러블 유연 센서 개발이 활발히 진행되면서 인체에 적용하는 센서로서의 유연 소재를 기반으로 다양한 전기저항식, 정전용량 방식의 플랫폼을 이용한 인장 센서가 많이 개발되고 있다.
그러나 기존의 전기저항식 센서는 장시간 반복 신호 안정성, 선형성에 한계를 보이며, 정전용량식 센서의 경우 외부 전기장의 영향에 취약하고 센서 민감도가 낮다. 이러한 점을 보완하기 위해 광학 방식의 유연 인장 센서가 개발됐으나 여전히 민감도가 낮다는 한계점이 있다.
문제 해결을 위해 연구팀은 탄소 나노튜브가 함침된 탄성중합체의 인장에 따른 광 투과도 변화 현상을 활용해 수 퍼센트에서 400%에 달하는 넓은 범위의 인장률을 안정적으로 측정할 수 있는 유연 인장 센서를 개발했다.
연구팀이 개발한 센서는 외부 인장에 따라 탄성중합체에 함침된 탄소 나노튜브 필름에 틈이 형성돼 광 투과도를 크게 변화시켜 기존의 광학 방식 인장 센서에 비해 10배 이상의 높은 감도를 가진다. 또한, 1만 3천 회 이상의 인장 변형에도 안정적인 신호 회복을 보이고, 다양한 환경 요인(온도, 습도)에도 안정적인 감지 성능을 보여 웨어러블 기기로 활용할 수 있는 큰 가능성을 보였다.
연구팀은 이러한 성능을 바탕으로 손가락 굽힘 동작을 측정해 이를 로봇 조종에 활용했으며, 3축 센서로 패키징 해 인체 자세 모니터링에 활용했다. 또한, 경동맥 근처의 맥박 모니터링과 발음할 때의 입 주변 근육 움직임 등 미세한 동작도 관찰하는 데 성공했다.
박인규 교수는 “이번 연구에서는 기존의 전기저항식, 정전용량식 및 광학 방식의 유연 인장률 센서가 갖는 한계점을 극복할 수 있는 새로운 플랫폼을 개발했다”라며 “헬스케어, 엔터테인먼트, 로보틱스 등 다양한 분야에 널리 활용할 수 있는 우수한 성능의 웨어러블 센서를 실현했다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제(올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 선도연구센터지원 사업(초정밀 광 기계기술 연구센터)의 지원을 통해 수행됐다.
2020.04.02
조회수 17991
-
김기응 교수 연구, 국제 AI 챗봇 챌린지 우승
우리 대학 AI대학원 김기응 교수 연구팀(이정관, 함동훈 석사과정, 장영수 박사과정)은 인공지능 대화 시스템 분야 대표적 국제 경진대회인 제8회 대화시스템기술챌린지(The Eighth Dialogue System Technology Challenge; DSTC8)의 다중 도메인 태스크 완수(Multi-Domain Task Completion) 부문에서 우승을 차지했다.
마이크로소프트 리서치, IBM 리서치, 아마존 알렉사 AI가 공동주최한 대화시스템기술챌린지는 2019년 6월 데이터셋 공개 이후 약 3개월에 걸쳐 진행됐다. 연구팀은 사람이 직접 평가하는 인적 평가에서 68.32%의 성공률로 1위를 차지했고, 언어 이해 점수와 응답 적절성 점수에서 큰 차이를 보였다(결과 안내 : https://convlab.github.io/ ).
이 대회에서는 호텔, 식당, 명소 등 다양한 주제가 등장할 수 있는 여행 정보 안내 상황에서 사용자와의 대화를 통해 ▲ 사용자 요구사항 이해 ▲ 데이터베이스에서 요청한 정보 검색 ▲ 예약 시스템과의 연동 등의 수 있는 목적지향 대화 챗봇(chat-bot)을 만드는 것을 목표로 한다.
이러한 업무를 위한 기존 대화 시스템은 사용자 발화 이해(Natural Language Understanding; NLU), 대화 상태 추적(Dialogue State Tracking; DST), 대화 정책 결정(Dialogue Policy), 시스템 발화 생성(Natural Language Generation; NLG)의 총 네 단계를 수행하는 특화된 모듈로 구성돼 독립적으로 개발하고 통합한다.
김 교수 연구팀은 언어생성 모델인 GPT-2를 기반으로 위의 네 단계를 모두 수행하는 하나의 심층 신경망 모델을 제안했다. 연구팀이 개발한 대화 시스템은 언어생성 모델의 강력한 성능을 활용하는 창의적인 훈련 기법을 선보임으로써 기존의 방법론에 비해 훈련 과정을 대폭 단순화했다.
김기응 교수는 “최근 딥러닝 언어모델들이 다양한 자연어처리 태스크에 활용되는 추세인데, 복잡한 목적지향 대화처리에도 간결한 훈련 방법을 통해 우월한 성능을 보일 수 있음을 공식적으로 인정받은 것에 의의가 있다”라며, “아직 해결해야 할 연구 이슈가 많지만, 이 연구를 출발점으로 삼은 새로운 개발방법론들이 많이 등장할 것으로 기대한다”라고 말했다.
이번 연구는 2020년도 AAAI 학술대회의 대화시스템기술챌린지 워크숍에서 발표될 예정이다. 이 연구 결과는 산업통상자원부의 산업기술혁신사업 지원의 실내용 음성대화 로봇을 위한 원거리 음성인식 기술 및 멀티 태스크 대화처리 기술 개발 과제 수행을 통해 이뤄졌다.
2020.01.31
조회수 10668
-
재촬영 없이 MRI 강조영상 얻는 AI 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀 자기공명영상(magnetic resonance imaging: MRI)에서 재촬영 없이도 누락된 강조영상을 얻을 수 있는 인공지능 기술을 개발했다.
이 연구를 통해 각 질환별로 강조영상이 암의 진단에 미치는 영향을 객관적으로 밝힐 수 있으며, 실제 임상에서 고비용의 MRI를 효과적이고 체계적으로 활용할 수 있는 방안을 설계할 수 있을 것으로 기대된다.
이동욱 박사가 1 저자로 참여하고 건국대 의과대학 영상의학과 문원진 교수팀이 참여한 이번 연구 결과는 국제 학술지 ‘네이처 머신인테리젼스(Nature Machine Intelligence)’ 1월 18일 자 온라인판에 게재됐다. (논문명 : Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks).
MRI는 엑스선 컴퓨터 단층촬영, 초음파와 더불어 임상 진단에서 중요한 역할을 하는 진단 장비이다. 특히 비침습적 방법으로 고해상도의 영상을 얻기 때문에 종양이나 병변을 관찰하며 진단하는데 매우 중요한 임상 정보를 제공한다. 이는 영상의 대조도 (contrast)를 다양하게 조절할 수 있는 MRI의 특징 덕분이다.
예를 들어 뇌종양을 진단하는 데 활용되는 T1·T2 강조영상, FLAIR 기법 영상, T1 조영증강 영상 등 여러 가지 대조 영상을 얻어 진단에 사용함으로써 종양을 찾을 수 있다.
하지만 실제 임상 환경에서는 강조영상을 모두 얻기 어려운 경우가 많다. 여러 장의 강조영상 촬영을 위해 촬영시간이 길어지기도 하고, 잡음이나 인공음영 발생으로 인해 진단에 사용하기 어려운 경우가 많기 때문이다.
또한, 뇌질환진단을 위한 MRI 검사는 의심 질환이 무엇인지에 따라 필수 강조영상이 달라지며, 이후 특정 질환으로 진단명이 좁혀지면서 부득이하게 누락된 강조영상을 확보하기 위한 재촬영이 필요한 경우가 많다. 이러한 상황에 의해 많은 시간과 비용이 소모된다.
최근 인공지능 분야에서 생성적 적대 신경망(Generative adversarial networks, GAN)이라는 딥러닝을 이용해 영상을 합성하는 기술이 많이 보고되고 있지만, 이 기술을 MRI 강조영상 합성에 사용하면 준비하고 미리 학습해야 하는 네트워크가 너무 많아지게 된다.
또한, 이러한 기법은 하나의 영상에서 다른 영상으로의 관계를 학습하기 때문에 몇 개의 강조영상의 존재하더라도 이 정보 간의 시너지를 활용하는 영상 학습기법이 없는 현실이다.
예 교수 연구팀은 자체 개발한 ‘협조·생성적 적대신경망(Collaborative Generative Adversarial Network : CollaGAN)’이라는 기술을 이용해 여러 MRI 강조영상의 공통 특징 공간을 학습함으로써 확장성의 문제를 해결했다.
이를 통해 어떤 대조 영상의 생성이 가능한지와 불가능한지에 대한 질문과, 그에 대한 체계적인 대답 기법을 제안했다.
즉, 여러 개의 강조영상 중에서 임의의 순서 및 개수로 영상이 없어져도 남아있는 영상을 통해 사라진 영상을 복원하는 기법을 학습한 후 합성된 영상의 임상적 정확도를 평가해, 강조 영상 간 중요도를 자동으로 평가할 수 있는 원천 기술을 개발했다.
예 교수 연구팀은 건국대 문원진 교수 연구팀과의 협력을 통해 T1강조·T2강조 영상과 같이 내인성 강조영상은 다른 영상으로부터 정확한 합성이 가능하며, 합성된 강조영상이 실제 영상과 매우 유사하게 임상 정보를 표현하고 있다는 것을 확인했다.
연구팀은 확보한 합성 영상이 뇌종양 분할기법을 통해 뇌종양 범위를 파악하는데 유용한 정보를 제공한다는 것을 확인했다. 또한, 현재 많이 사용되는 합성 MRI 기법(synthetic MRI)에서 생기는 인공음영 영상도 자동 제거가 가능함이 증명됐다. 이 기술을 이용하면 추가적인 재촬영을 하지 않고도 필요한 대조 영상을 생성해 시간과 비용을 비약적으로 줄일 수 있을 것으로 기대된다.
건국대 영상의학과 문원진 교수는 “연구에서 개발한 방법을 이용해 인공지능을 통한 합성 영상을 임상현장에서 이용하면 재촬영으로 인한 환자의 불편을 최소화하고 진단정확도를 높여 전체의료비용 절감 효과를 가져올 것이다”라고 말했다.
예종철 교수는 “인공지능이 진단과 영상처리에 사용되는 현재의 응용 범위를 넘어서, 진단의 중요도를 선택하고 진단 규약을 계획하는 데 중요한 역할을 할 수 있는 것을 보여준 독창적인 연구이다”라고 말했다.
이 연구는 한국연구재단의 중견연구자지원사업을 받아 수행됐다.
□ 그림 설명
그림1. CollaGAN의 작동 원리의 예
2020.01.30
조회수 12699
-
장영재 교수, 스마트 팩토리 교육 노하우 국내 IT 기업에 기술 이전
우리 대학 산업및시스템공학과 장영재 교수가 최근 레고 기반 '스마트 팩토리' 교육 노하우를 국내 제조 IT 전문기업 큐빅테크에 기술이전 했다.
그동안 현대중공업, LG전자, 한국타이어 등 기업과의 산학협력을 통한 기술 활용이나 이탈리아 밀란 폴리텍, 독일 하노버 대학 등 같은 교육기관 간에 기술 이전을 시행한 선례는 있으나 우리 대학의 창의 수업을 기업에 기술이전 한 사례로서는 최초다.
'제조 프로세스 혁신 (IE251)'은 산업및시스템공학과 학부생들의 필수 교과목 중 하나로 스마트팩토리의 모형을 레고로 만들어 학생들이 직접 설계, 제작해 시연까지 하는 것이 특징이다.
장영재 교수 연구팀은 스마트 팩토리의 기술적 바탕은 물론 국내 제조 현실을 반영해 실제로 응용할 수 있게 커리큘럼을 구성했다. 또한, 관련 하드웨어 및 소프트웨어도 함께 개발했으며 제조 수업에서 한 단계 나아가 학부 AI 과목에도 활용하고 있다.
장영재 교수의 연구 내용은 국제 학술지인 『Engineering Education Journal』 에도 게재되었으며 글로벌 소프트웨어 기업인 매스웍스(Mathworks) 교육혁신 Grant Award도 수상한 바 있다.
참고 동영상 바로 보기 => ( https://www.youtube.com/watch?v=_-s_pwGoqr4&feature=youtu.be )
2019.11.29
조회수 10661
-
학생생활처, Busking @ KAIST 개최
우리 대학 학생생활처(처장 류석영)는 18일 점심 시간 학술문화관 앞 잔디밭과 저녁 시간 카이마루 앞에서 Busking @ KAIST 공연을 개최했다.
행복하고 친근한 캠퍼스 분위기를 만들기 위해 기획된 이번 행사는 학생, 직원, 교수 모두의 참여로 진행됐다. 이틀에 걸친 시범 행사 진행 후 구성원들의 반응이 좋을 경우 2020년 봄학기에는 음악 뿐 아니라, 춤, 그림, 마술 등 다양한 활동을 지원할 계획이다.
류석영 처장은 "부쩍 쌀쌀해진 날씨에 바쁘신 중이라도 잠시 들러서 음악으로 마음을 녹이시길 바란다"고 전했다.
Busking @ KAIST의 2차 공연은 오는 20(수) 점심 시간(12:00-12:50, 동측식당 앞)과 저녁 시간 (18:10-19:00, 카이마루 앞)에 이어질 예정이다.
2019.11.19
조회수 4993
-
원자력및양자공학과, 미시간대학교 개리 와스 교수 초청 강연 개최
우리 대학 원자력 및 양자공학과는 지난 11월 5일 원자력 재료 분야의 세계적인 석학인 미시간대학교 개리 와스(Gary Was) 교수의 Distinguished Lecture Series를 개최했다.
연사로 초청된 개리 와스 교수는 1980년 MIT에서 원자력공학 박사학위를 취득한 후 미시간대학교 교수로 부임한 이래 40년 가까이 활발한 연구 활동을 지속하며 270여 편의 연구논문을 발표하고 200회 이상의 강연에 초청받은 석학이자, 현재 원자력 분야 최고 저널인 Journal of Nuclear Materials 의 편집장을 맡고 있다.
강단에 선 와스 교수는 원자력의 중요성이 인류의 현안인 기후 변화에 대응하는 수단으로서 강조되고 있으며 이 같은 인식이 미국 언론 및 정치권에서 중요한 화두로 다뤄지고 있다고 소개했다.
특히, 최근 혁신적인 신개념 중소형 원자로개발을 위한 법령이 공화당과 민주당 양당의 전폭적인 지지를 받은 이례적인 사례도 강조했다. 미국의 저탄소(carbon-free) 발전의 3분의 2를 원자력이 담당하고 있으며 원자력이 기여한 총 탄소저감량이 신재생을 포함한 다른 모든 발전원들보다도 많다는 점을 이러한 현상의 배경으로 설명했다.
또한, 원전의 우수한 안전성과 성능에 기반해 미국 내 대다수 원전이 60년 장기 운전을 허가받았으며 일부는 80년까지의 장기 운전을 추진하고 있다는 것을 소개했다.
와스 교수는 계획된 예산과 기간 내에 신규 원전을 건설할 수 있는 한국 원전산업의 능력은 한국은 물론 전 세계의 지구온난화 문제를 해결할 수 있는 소중한 자산이며, 한국은 미국보다 최소 3배 이상 낮은 가격으로 원전을 건설할 수 있게 하는 경쟁력을 가졌다고 평가했다. 이러한 한국의 원전산업이 위기에 처한 현 상황을 매우 안타까워하며, 향후 원자력에 대한 한국의 정치적 환경이 조속히 변화되길 바란다고 의견을 밝혔다.
마지막으로, 와스 교수는 원전의 장기 운전과 혁신적인 미래원자로개발에 따른 원자력재료 분야의 전망 및 도전 과제를 설명하고 이를 해결하기 위한 창의적인 접근법이 필요하다는 것을 사례와 함께 소개했다.
와스 교수는 "KAIST와 미시간 대학은 원자력 분야 발전을 위해 함께 협력하는관계로 발전할 것ˮ이라고 전했다.
KAIST 원자력 및 양자공학과의 Distinguished Lecture Series는 2014년 닐 토드레아스(Neil Todreas) MIT 명예교수를 시작으로, 2017년 스티븐 추(Steven Chu) 前 미국 에너지성 장관(1997년 노벨 물리학상 수상)의 강연을 포함해 올해로 6회차를 맞았다.
2019.11.07
조회수 9399
-
최원호 교수, 플라즈마에 의한 수산기(OH radical) 생성원리 규명
〈 박주영 박사, 최원호 교수, 박상후 박사 〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 대기압 플라즈마에서 수산기(OH radical)가 생성되는 원리를 규명하는 데 성공했다.
박상후 박사, 박주영 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 7월 8일 자 온라인판에 게재됐다 (논문명: Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid).
플라즈마란 강한 전기적 힘으로 인해 기체 분자가 이온과 전자로 나누어지는 상태를 말한다. 특히 대기압 플라즈마는 대기 중에 여러 형태로 플라즈마 효과 및 2차 생성물을 방출하는 장점이 있어 살균, 정화, 탈취 등 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구 및 산업 분야에 활용되고 있다.
다양한 분야에서 시도되는 플라즈마는 물과 밀접한 관련이 있다. 물을 플라즈마로 처리한 방전수를 만들어 농업용수 및 살균수로 사용하기도 하고, 생의학 분야에서도 70%가 수분으로 구성된 인체에 활용하기 위해 플라즈마와 물의 반응에 대해 끊임없이 연구가 진행된다.
그중 수산기는 대표적인 활성 산소종으로, 물과 플라즈마의 반응에서 가장 중요한 역할을 하는 물질이다.
수산기는 산화력이 매우 커 여러 목적으로 활용이 시도되고 있으며, 박테리아 살균의 경우 기존의 살균법인 과산화수소나 오존을 사용할 때보다 수십에서 수백 배 효율이 높은 것으로 2018년 최원호 교수 연구팀에서 밝힌 바 있다.
수산기는 살균뿐 아니라, 수질 정화, 폐수 처리, 세척 등 환경 분야 및 멸균, 소독, 암세포 제거 등 의료 기술에서도 매우 높은 잠재력을 가지고 있다.
그러나 수산기는 대량으로 생성하기가 어렵고 생존 기간이 짧아 플라즈마 기술을 적극적으로 활용하는 데 한계가 있다.
연구팀은 문제 해결을 위해 플라즈마 내에서 기존에 알려진 수산기의 생성 방식 외에 산화질소의 광분해에 의한 생성원리를 규명했다. 더불어 광분해를 촉진시켜 수산기의 생성량을 높이면서 동시에 제어하는 방법을 개발했다.
광분해 방법이란 플라즈마로 생성된 산화질소가 존재하는 물과 플라즈마에 자외선을 추가로 노출해 산화질소가 수산기로 분해되는 과정을 말한다. 연구팀이 개발한 광분해방법은 수산기의 생성 위치를 국한하지 않고, 자외선 노출 위치에 따라 제어할 수 있어 생존 기간이 짧다는 단점을 극복할 수 있다.
최원호 교수는 “이번 연구를 통해 플라즈마 기술에 대한 과학적 이해를 넓히면서 효율적인 플라즈마 기술의 제어 방법을 제시함으로써 농업, 식품, 바이오 의학 등 다양한 분야에 플라즈마 기술이 적극적으로 접목될 수 있는 기반을 마련할 것이다”라고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 플라즈마 처리수(PTW)에서 pH와 과산화수소, 아질산염 비율에 따른 수산기 반응 경로
그림2. 대기압 플라즈마 사진 및 수산기 생성경로
2019.08.16
조회수 13651