-
역대급 진청색 페로브스카이트 LED 구현 성공
태양전지, 광검출기, LED 등 다양한 차세대 광전소자에 적용가능한 물질로 주목을 받는 할라이드(할로젠화물) 페로브스카이트는 ‘Rec. 2020’이라는 디스플레이의 색 좌표 기준을 100% 만족할 수 있는 유일한 물질이다. 하지만, 이렇게 우수한 성능에도 진청색 페로브스카이트 LED의 경우에는 현저히 낮은 효율과 낮은 밝기를 보고하고 있었다. KAIST 연구진이 진청색 페로브스카이트 LED에서 보이는 색상 불안정성 문제를 해결함과 동시에, 높은 밝기를 갖는 기술을 선보여 화제다.
우리 대학 전기및전자공학부 이정용 교수 연구팀이 높은 색순도로 인해 차세대 디스플레이로 주목받는 진청색 페로브스카이트 LED의 구동 전압에 따라 변화하는 색 변화 문제와 낮은 밝기 문제를 획기적으로 해결했다고 10일 밝혔다.
이정용 교수 연구팀은 점차 고색순도를 요구하고 있는 디스플레이 업계의 요구에 따라, 높은 색순도를 갖는 것으로 알려진 페로브스카이트 LED 중 진청색 LED의 고질적인 문제점들을 효과적으로 해결하는 기술을 개발했다.
먼저, 서로 다른 종류의 이온들을 혼합해 만드는 진청색 LED의 경우 구동 전압의 크기에 따라 색이 변화하는 문제점과 상용화에 가장 중요한 지표인 밝기가 낮다는 문제점을 해결해야만 상용화에 조금 더 다가갈 수 있는 상황이었다. 이정용 교수 연구팀은 염화이온 공석 타겟 리간드 전략*을 사용해 이러한 문제점을 획기적으로 해결할 수 있었다. 이를 기반으로 진청색 페로브스카이트 LED의 고질적인 문제점을 해결할 수 있는 인사이트를 제시함으로써 상용화에 한층 더 가까이 갈 수 있을 것으로 기대된다.
*염화이온 공석 타겟 리간드 전략 : 결정구조의 결함(defect)로 여겨지는 1가 양이온 공석(vacancy), 2가 양이온 공석 등 다양한 종류의 공석 중, 염화이온 공석만을 특정하여 이를 효과적으로 제거할 수 있는 sulfonate 리간드 전략을 디자인하여 적용함
연구팀은 색 불안정성을 유발하는 원인인 이온 이동에 의한 상 분리 현상을 일으키는 할라이드 이온 통로*를 표적으로 하여 막을 수 있는 물질을 선택하고 전략적으로 해당 통로를 막음으로써, 이온 이동을 효과적으로 억제했다. 또한, 해당 전략을 적용할 수 있는 물질의 후보군을 선택해, 탄소 사슬의 길이 변화에 따른 성능변화 경향 및 색 안정성 경향도 함께 보여 진청색 페로브스카이트 LED의 문제점을 해결할 수 있는 새로운 관점을 제시했다.
*할라이드 이온 통로: 할라이드 이온들이 페로브스카이트 격자 내부를 이동할 수 있는 통로 역할을 하는 할라이드 공석(vacancy)을 일컬음
또한 연구팀은 해당 연구를 통해, 지금까지 보고된 진청색 페로브스카이트 LED 성능 중에서 가장 높은 수준의 밝기(2700 nit)를 보고했다. 이를 통해, 햇빛이 강하게 내리비치는 야외 조명환경에서 디스플레이가 잘 보이지 않는 야외시인성 문제를 해결할 수 있는 수준의 높은 밝기를 갖는 진청색 페로브스카이트 LED를 제작해 해당 차세대 페로브스카이트 디스플레이의 상용화를 한층 더 앞당길 수 있을 것으로 기대된다.
제1 저자인 이승재 박사과정생은 "서로 다른 할라이드 이온들을 혼합해 만드는 진청색 페로브스카이트 LED의 고질적인 색 불안정성 문제를 효과적으로 해결한 연구ˮ 이며 "동시에 최근 스마트폰에서 요구하는 최대 밝기인 2,000 니트(nit) 이상의 높은 밝기를 갖는 우수한 진청색 페로브스카이트 LED를 제작해, 이미 높은 수준을 보이는 녹색과 적색 LED와의 격차를 한층 더 줄임으로써 RGB 디스플레이에 적용할 수 있는 가능성을 열었다.ˮ 라고 말했다.
전기및전자공학부 이승재 박사과정, 김준호 박사가 제1 저자로 참여한 이번 연구는 국제학술지 ‘사이언스(Science)’의 자매지인 ‘사이언스 어드밴시스(Science Advances)’2024년 5월 온라인판에 정식 출판됐다. (논문명 : Brightening deep-blue perovskite light-emitting diodes: A path to Rec. 2020)
한편 이번 연구는 한국연구재단 (NRF)의 지원을 받아 수행됐다.
2024.07.10
조회수 3304
-
미생물로 계란을 만든다고?
우리 연구진이 미생물로 계란의 대체제를 개발하는 논문을 발표해서 화제다. 비동물성 원료를 활용한 계란 대체제 개발을 통해 온실가스 배출 및 폐기물 문제 등을 가져오는 공장식 축산의 문제를 해결하고 손쉽게 단백질 섭취가 가능한 지속가능한 식량 체계 구축에 기여할 수 있을 것으로 기대한다.
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘미생물 유래 친환경 액상 계란 대체물 개발’논문을 발표했다고 4일 밝혔다.
연구진은 미생물 용해물의 가열을 통해 형성된 젤이 삶은 계란과 유사한 미시적 구조와 물리적인 특성을 가지는 것을 확인하였고, 미생물 유래의 식용 효소나 식물성 재료를 첨가하여 다양한 식감을 구현할 수 있음을 밝혔다. 더 나아가, 액체 상태인 용해물을 이용하여 머랭 쿠키를 굽는 등, 미생물 용해물이 난액을 기능적으로 대체할 수 있음을 규명하였다.
현재까지 비동물성 단백질을 기반으로 한 계란 대체제 개발이 진행돼왔으나, 계란의 온전한 영양을 제공하는 동시에 젤화, 거품 형성 등 난액(卵液)이 요리 재료로서 지니는 중요한 핵심 기능적 특성을 함께 구현하는 대체제는 개발되지 못했다. 이러한 배경에서, 연구진은 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 미생물 바이오매스를 난액 대체제로 개발하고자 했다.
특히, 인류의 오랜 섭취 경험을 통해 효모, 고초균, 유산균 및 기타 프로바이오틱스 균주 등 다양한 미생물들의 안정성이 검증됐고, 미생물 바이오매스는 생산 시 발생하는 이산화탄소뿐만 아니라 물, 토지 등 요구되는 자원이 적으면서도 고품질의 영양성분을 가지고 있기에, 연구진은 미생물 바이오매스를 대체 난액으로 활용하는 기술을 개발할 수 있다면 지속 가능한 미래 식량자원의 확보에 기여할 수 있을 것으로 기대했다.
하지만 미생물 배양을 통해 회수한 반고체 상태의 미생물 바이오매스를 가열하면 난액과 달리 액상으로 변하는 것이 관찰됐다. 이에 연구진은 계란찜을 만들기 위해선 먼저 계란의 껍데기[난각(卵殼)]를 깨트리고 난액을 모아야 한다는 사실에 착안해 미생물의 세포 구조 중 난각에 상응하는 세포벽과 세포막을 파쇄해 미생물 용해물을 제조했고, 이를 가열할 경우 난액처럼 단백질이 응고돼 젤 형태로 변하는 것을 확인했다.
이상엽 특훈교수는 “영양 측면에서도 우수한 성분들을 갖추고 있어 평소 식량에도 사용될 수 있지만, 특히 미래 장거리 우주여행 식량, 전시 상황 등 긴급 상황 시의 대비를 위한 비상식량 등으로도 활용할 수 있으며, 무엇보다 지속 가능한 식량 체계 확보에 도움이 된다”고 말했다.
이번 논문은 네이처(Nature) 誌가 발행하는 'npj 식품 과학(npj Science of Food)'에 6월 19일자 온라인 게재됐다.
※ 논문명 : Microbial lysates repurposed as liquid egg substitutes
※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 안다희(한국과학기술원, 제2 저자), 정석영(한국과학기술원, 제3 저자), 이유현(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명
이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)와 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수) 및 의 지원을 받아 수행됐다.
2024.07.04
조회수 4047
-
차세대 뉴로모픽 컴퓨팅 신뢰성 문제를 풀다
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다.
우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다.
* 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함
공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을 도핑하는 방식으로 소자의 균일성과 성능을 향상할 수 있다는 사실을 실험과 원자 수준의 시뮬레이션을 통해 원리를 규명했다.
공동 연구팀은 이러한 불규칙한 소자 신뢰성 문제를 해결하기 위해 이종원자가 할라이드(halide) 이온을 산화물 층 내에 적절히 주입하는 방법이 소자의 신뢰성과 성능을 향상할 수 있음을 보고했다. 연구팀은 이러한 방법으로 소자 동작의 균일성, 동작 속도, 그리고 성능이 증대됨을 실험적으로 확인했다.
연구팀은 또한, 원자 단위 시뮬레이션 분석을 통해 결정질과 비결정질 환경에서 모두 실험적으로 확인한 결과와 일치하는 소자 성능 개선 효과가 나타남을 보고했다. 그 과정에서 도핑된 이종원자가 이온이 근처 산소 빈자리(oxygen vacancy)를 끌어당겨 안정적인 소자 동작을 가능하게 하고, 이온 근처 공간을 넓혀 빠른 소자 동작을 가능하게 하는 원리를 밝혀냈다.
최신현 교수는 "이번에 개발한 이종원자가 이온 도핑 방법은 뉴로모픽 소자의 신뢰성과 성능을 획기적으로 높이는 방법으로서, 차세대 멤리스터 기반 뉴로모픽 컴퓨팅의 상용화에 기여할 수 있고, 밝혀낸 성능 향상 원리를 다양한 반도체 소자들에 응용할 수 있을 것이다ˮ 고 밝혔다.
전기및전자공학부 배종민 석사과정, 한양대학교 권초아 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 6월호에 출판됐다. (논문명 : Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems)
한편 이번 연구는 한국연구재단 신소자원천기술개발사업, 신재료PIM소자사업, 우수신진연구사업, 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업, 그리고 국가슈퍼컴퓨팅센터 혁신지원프로그램의 지원을 받아 수행됐다.
2024.06.21
조회수 5039
-
값싸고 40% 향상된 리튬이온전지 만든다
전기자동차, 스마트폰 등에 사용되는 리튬이온전지 원가 중 가장 높은 비율을 차지하는 가장 비싼 재료는 니켈, 코발트와 같은 고가 희귀금속이 다량 포함된 양극재다. 국제공동연구진이 리튬이온전지의 에너지 밀도와 가격 경쟁력을 모두 높이는 새로운 전략을 제시했다.
우리 대학 신소재공학과 서동화 교수 연구팀이 UNIST, 캐나다 맥길대(McGill University)와 공동연구를 통해 리튬이온전지 양극의 핵심 광물인 값비싼 니켈, 코발트 없이도 에너지밀도가 40% 향상된 고성능 차세대 리튬이온전지 양극을 개발했다고 1일 밝혔다.
국제공동연구팀은 망간 기반의 양이온-무질서 암염(Disordered rock-salt, 이하 DRX) 양극재에 주목했다. DRX 양극재는 값싸고 매장량이 풍부한 망간, 철 등을 사용할 수 있으면서 양극재 무게 기준 기존 상용화된 삼원계양극재(약 770Wh/kg)보다 높은 에너지밀도(약 1,000Wh/kg)를 가질 수 있기 때문이다. 무엇보다, 값비싼 니켈과 코발트 없이도 소재를 설계할 수 있다는 장점이 있어 차세대 리튬이온전지 양극재로 주목받고 있다.
그러나 망간 기반 DRX 양극재의 경우 양극재 비율이 90% 이상인 전극으로 전지를 만들면 전지 성능이 매우 낮고 급격하게 열화되는 문제가 있었다. 따라서 DRX 양극재 연구자들은 양극재 비율을 70%로 낮춰 전극을 만들어야 했는데, 이 경우 전극 수준에서 삼원계(약 740Wh/kg)보다 오히려 낮은 에너지밀도(약 700Wh/kg)를 가지게 되는 문제가 있었다.
공동연구팀은 전극 내 망간 기반 DRX 양극재 비율이 높을수록 전자 전달 네트워크가 잘 형성되지 않고, 충·방전 간 부피 변화율이 높을수록 충·방전 동안 네트워크 붕괴가 잘 일어나 전지의 저항이 크게 증가한다는 것을 밝혔다. 고성능 차세대 양극재를 사용하더라도 저항이 크게 걸려 전지가 제 성능을 낼 수 없었던 것이다.
공동연구팀의 연구에 따르면, 망간 기반 DRX 전극 제조 시 다중벽 탄소나노튜브*를 사용하여 DRX 양극재의 낮은 전자전도도를 보완하고 충·방전 간 부피 변화를 견딜 수 있게 되어 전극 내 양극재의 비율을 96%까지 끌어올리더라도 전자 전달 네트워크와 전지 성능이 열화되지 않았다. 이를 통해 니켈, 코발트 없이 전극 무게 기준 약 1,050Wh/kg의 높은 에너지밀도를 보이는 차세대 리튬이온전지 양극을 개발했다. 이는 리튬이온전지 양극 중 세계 최고 수준이며, 상용 삼원계 양극 대비 에너지밀도가 40% 향상된 수준이다.
*다중벽 탄소나노튜브: 여러 개의 농축된 원통형 그래핀 층으로 구성된 나노 스케일의 튜브
또한, DRX 양극재 내 망간 함량이 높을수록 전자전도도는 높지만, 동시에 부피 변화율도 높다는 상관관계를 발견했다. 이러한 이해를 기반으로 망간 함량을 낮춰 부피 변화를 억제하고, 다중벽 탄소 나노튜브를 사용해 낮은 전자전도도를 극복한다는 차세대 리튬이온전지 양극 설계 전략을 연구팀은 제시했다.
서동화 교수는 “상용화를 위해 풀어야 할 문제들이 아직 남아있지만 대 중국 의존도가 높은 니켈, 코발트 광물이 필요 없는 차세대 양극 개발 시 자원 무기화에 대비할 수 있고 리튬 인산철 양극 주도의 저가 이차전지 시장에서 우리 기업의 글로벌 경쟁력이 강화될 것으로 기대된다”라고 말했다.
이번 연구에는 이진혁 맥길대 교수가 공동교신저자로, 이은렬 UC버클리 박사후연구원(연구 당시 UNIST 에너지화학공학과 박사과정), 이대형 KAIST 신소재공학과 박사과정이 공동 제1 저자로 참여했다. 또, KAIST 신소재공학과 박상욱 박사과정, 김호준 석사과정이 공저자로 참여했다. 연구 수행은 한국연구재단의 과학기술분야 기초연구사업, 나노 및 소재 기술개발사업, 원천기술 개발사업 및 산업통상자원부의 에너지인력 양성사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.
연구 결과는 에너지 분야 국제학술지 ‘에너지 및 환경과학(Energy & Environmental Science)’ 지난 3월 27일자로 온라인 공개되었고, 6월호 표지 논문으로 출판될 예정이다. (논문명 : Nearly all-active-material cathodes free of nickel and cobalt for Li-ion batteries).
2024.05.02
조회수 5362
-
간단 공정으로 이산화탄소 분리 성공하다
한국 연구진이 고분자 구조를 체계적으로 튜닝해 기체 혼합물에서 이산화탄소를 선택적으로 투과시키는 고효율 멤브레인(분리막) 제조 기술을 개발했다. 이를 통해 수많은 화학 산업 및 환경 분야에서도 넓게 적용이 가능하여 탄소중립 구현에 크게 기여할 것으로 기대된다.
우리 대학 생명화학공학과 배태현 교수 연구팀이 고분자 분리막의 구조와 화학적 특성을 전략적으로 제어해 높은 효율로 이산화탄소를 분리 제거할 수 있는 기술을 개발했다고 22일 밝혔다.
멤브레인(분리막)은 목표 물질을 선택적으로 투과시키는 박막으로 정의되며, 저에너지 분리 기술로 주목을 받아 왔다. 하지만 기존의 고분자 분리막은 치밀한 구조를 가져 활용이 제한되는 단점이 있어 이를 대체하기 위해, 일정한 미세 기공을 갖는 소재를 분리막으로 활용해 기체의 투과 선택성을 높이려는 연구가 많이 수행됐다. 하지만 기존의 분자체 분리막들은 양산에 어려움이 있고 제조 과정이 복잡하며 강도가 부족해 실제 공정에 사용하기에 적합하지 못하다는 단점을 극복하지 못했다.
연구팀은 가공성 높은 고분자를 소재로 하고, 제어가 쉬운 화학반응을 이용하여 미세 기공을 형성함으로써 저비용으로 양산이 가능한 분자체 분리막을 구현했다. 사전에 전략적으로 디자인된 고분자에는 다양한 화학 작용기를 도입할 수 있는데, 이번 연구에서는 고분자 분자체 분리막에 이산화탄소의 선택투과성을 높이기 위해서 아미노 그룹*을 도입시켰다.
*아미노그룹: 질소원자에 수소가 결합된 화학작용기 (-NH2)
새로 개발된 분리막은 고성능이지만 쉽게 부서지는 탄소 분자체 분리막과 달리 고분자 분리막에 준하는 기계·화학적 안정성이 높고 유연성을 지녔다. 또한 대량생산에도 유리한 공정을 적용해 상업화에도 유리한 조건을 갖추고 있다.
현재까지 개발된 탄소 분자체 분리막 중 성능이 우수한 분리막들에 버금가는 이산화탄소 분리 성능을 보이며 이번에 개발된 기술은 적용되는 분리 공정에 따라서 맞춤형으로 튜닝이 가능해, 차후 여러 산업 분야로 확대 적용이 가능한 범용성 기술이다.
생명화학공학과 이홍주 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 4월 12일 자 온라인 게재됐다. (논문명 : Mechanically stable polymer molecular sieve membranes with switchable functionality designed for high CO2 separation performance).
제1 저자인 이홍주 연구원은 "이번 연구에서 개발한 이산화탄소 분리막은 분자체 분리막 개념에 혁신적인 패러다임 발전을 이끌었을 뿐만 아니라 비교적 간단한 공정 과정으로도 고분자 소재에서는 달성하기 어려웠던 이산화탄소 분리 성능을 확보하는 데 성공했다ˮ 라며 "고분자 분리막이나 탄소 분자체 분리막을 적용하고자 했던 여러 화학 산업에 적용가능한 훌륭한 대안을 제시한 연구ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 중견 연구자 지원사업 및 선도 연구센터의 분산형 저탄소 수소생산 사업과 사우디아람코-KAIST CO2 매니지먼트 센터의 지원을 받아 수행됐다.
2024.04.22
조회수 8672
-
암세포만 골라 유전자 교정 치료하는 신약 개발
최근 크리스퍼(유전자 가위) 기술을 활용한 유전자 교정 치료제 연구가 활발하다. 기존 화학적 항암치료제와는 달리 크리스퍼 기술 기반 유전자 교정 치료제는 질병 표적 유전자를 영구적으로 교정할 수 있어 암 및 유전 질환 치료제로 각광받고 있지만, 생체 내에서 암 조직으로 낮은 전달 효율과 낮은 효능으로 어려움을 겪고 있다.
우리 대학 생명과학과 정현정 교수 연구팀이 크리스퍼 기반 표적 치료제로 항체를 이용한 크리스퍼 단백질을 생체 내 표적 조직에 특이적으로 전달하는 항암 신약을 개발해 암세포 선택적 유전자 교정 및 항암 효능을 보였다고 8일 밝혔다.
유전자 치료에 사용하는 바이러스 기반 전달 방법은 인체 내 면역 부작용, 발암성 등 한계점을 가지고 있다. 이에 선호되는 비 바이러스성 전달 방법으로 단백질 기반의 크리스퍼 기술 전달은 본래의 표적과는 다른 분자를 저해 혹은 활성화하는 효과를 가져오는 오프타깃 효과가 최소화되며 보다 높은 안전성으로 치료제로서 개발이 적합하다. 하지만 크리스퍼 단백질은 분자량이 커서 전달체에 탑재가 어렵고 전달체의 세포 독성 문제 및 낮은 표적 세포로의 전달에 있어 어려움이 있다.
이러한 문제점들을 극복하기 위해 연구팀은 크리스퍼 단백질에 특정 아미노산을 변경시켜 다양한 생체분자를 보다 많이 결합시키고 생체 내 본질적인 생화학 과정을 방해하지 않는 단백질을 개발했다. 연구팀은 기존 비 바이러스성 전달체의 문제 해결 및 표적 세포로의 전달을 위해 개량한 크리스퍼 단백질을 난소암을 표적할 수 있는 항체와 결합함으로써 표적 치료제를 위한 항체 결합 크리스퍼 나노복합체(⍺Her-CrNC, anti-Her2 conjugated CRISPR nanocomplex)를 개발했다.
암세포 표면은 종양 항원(tumor antigen)으로 알려진 항원이 존재한다. 몇몇 종양 항원은 표적이 되어 진단 및 임상시험에 이용되고 있다. 연구팀은 개발한 항체 결합 크리스퍼 나노복합체가 종양 항원을 표적해 난소암세포 및 동물모델에서 암세포 특이적으로 세포 내 전달이 가능하고 세포주기를 관장하는 PLK1* 유전자 교정을 통해 높은 항암효과가 나타남을 확인했다.
* PLK1(polo-like kinase): 세포 분열을 조절하는 인산화효소이며, 암세포 분열과 관련이 깊다고 알려져 있음. 본 연구에서는 PLK1 유전자를 표적하여 암세포 분열을 억제하여 항암 효과를 유도하였음
연구를 주도한 정현정 교수는 “이번 연구는 최초로 크리스퍼 단백질과 항체를 결합해 효과적으로 암세포 특이적 전달 및 항암 효능을 보였다는 점에서 의의가 있다. 아울러, 이번 연구 결과를 기반으로 향후 생체 내 전신 투여를 통한 유전자 교정 치료 및 다양한 암종에 적용할 수 있는 플랫폼 기술로 기대하고 있다”고 말했다.
우리 대학 생명과학과 석박사통합과정 양승주 학생이 제1 저자로 참여한 이번 연구는 국제학술지 `어드밴스드 사이언스(Advanced Science)'에 3월 29일 온라인 게재됐다. (논문명: An Antibody-CRISPR/Cas Conjugate Platform for Target-Specific Delivery and Gene Editing in Cancer)
한편 이번 연구는 과학기술정보통신부와 한국연구재단 및 보건복지부의 지원을 통해 이뤄졌다.
2024.04.08
조회수 6294
-
해킹 공격 막는 암호 반도체 최초 개발
사물인터넷(IoT), 자율 주행 등 5G/6G 시대 소자 또는 기기 간의 상호 정보 교환이 급증함에 따라 해킹 공격이 고도화되고 있다. 이에 따라, 기기에서 데이터를 안전하게 전송하기 위해서는 보안 기능 강화가 필수적이다.
우리 대학 전기및전자공학부 최양규 교수와 류승탁 교수 공동연구팀이 ‘해킹 막는 세계 최초 보안용 암호 반도체’를 개발하는 데 성공했다고 29일 밝혔다.
연구팀은 100% 실리콘 호환 공정으로 제작된 핀펫(FinFET) 기반 보안용 암호반도체 크립토그래픽 트랜지스터(cryptographic transistor, 이하 크립토리스터(cryptoristor))를 세계 최초로 개발했다. 이는 트랜지스터 하나로 이루어진 독창적 구조를 갖고 있을 뿐만 아니라, 동작 방식 또한 독특해 유일무이한 특성을 구비한 난수발생기다.
인공지능 등의 모든 보안 환경에서 가장 중요한 요소는 난수발생기이다. 가장 널리 사용되는 보안 칩인 ‘고급 암호화 표준(advanced encryption standard, AES)’에서 난수발생기는 핵심 요소로, AES 보안 칩 전체 면적의 약 75%, 에너지 소모의 85% 이상을 차지한다. 따라서, 모바일 혹은 사물인터넷(IoT)에 탑재가 가능한 저전력/초소형 난수발생기 개발이 시급하다.
기존의 난수발생기는 전력 소모가 매우 크고 실리콘 CMOS 공정과의 호환성이 떨어진다는 단점이 있고, 회로 기반의 난수발생기들은 점유 면적이 매우 크다는 단점이 있다.
연구팀은 기존 세계 최고 수준 연구 대비 전력 소모와 점유 면적 모두 수천 배 이상 작은 암호 반도체인 단일 소자 기반의 크립토리스터(cryptoristor)를 개발했다. 절연층이 실리콘 하부에 형성되어 있는 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 기판 위에 제작된 핀펫(FinFET)이 가지는 내재적인 전위 불안정성을 이용해 무작위적으로 0과 1을 예측 불가능하게 내보내는 난수발생기를 개발했다.
다시 설명하면, 보통 모바일 기기 등에서 정보를 교환할 때 데이터를 암호화하는 알고리즘에는 해커가 암호화한 알고리즘을 예측할 수 없도록 하는 것이 중요하다. 이에 무작위의 0과 1이 난수이며 0과 1의 배열이 매번 다른 결과가 나오게 하여 예측 불가능성을 가지도록 함으로써 공격자가 예측하지 못하도록 차단하는 방식이다.
특히, 크립토리스터 기반 난수발생기 연구는 국제적으로도 구현한 사례가 없는 세계 최초의 연구이면서, 기존 논리 연산용 또는 메모리용 소자와 동일한 구조의 트랜지스터이기 때문에, 현재 반도체 설비를 이용한 양산 공정으로 100% 제작이 가능하며 저비용으로 빠르게 대량생산이 가능하다는 점에서 의미가 크다.
연구를 주도한 김승일 박사과정은 개발된 “암호 반도체로서 초소형/저전력 난수발생기는 특유의 예측 불가능성으로 인해 보안 기능을 강화해 칩 또는 칩 간의 통신 보안으로 안전한 초연결성을 지원할 수 있고, 특히 기존 연구 대비 에너지, 집적도, 비용 측면에서 탁월한 장점을 갖고 있어 사물인터넷(IoT) 기기 환경에 적합하다”고 연구의 의의를 설명했다.
전기및전자공학부 김승일 박사과정이 제1 저자, 유형진 석사가 공저자로 참여한 이번 연구는 국제학술지 ‘사이언스(Science)’의 자매지인 ‘사이언스 어드밴시스(Science Advances)’ 2024년 2월 온라인판에 정식 출판됐다. (논문명 : Cryptographic transistor for true random number generator with low power consumption)
한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 국가반도체연구실지원핵심기술개발사업의 지원을 받아 수행됐다.
2024.02.29
조회수 5610
-
땀에도 강한 웨어러블 로봇 제어 센서 선보이다
노인, 뇌졸중 환자, 외상 환자들의 다양한 재활치료에 활용되는 웨어러블 로봇이 착용자의 땀, 각질 등에도 끄떡없이 장기간 안정적으로 제어 가능하도록 도와주는 근전도 센서 기술이 개발되어 화제다.
우리 대학 전기및전자공학부 정재웅 교수와 기계공학과 김정 교수 연구팀이 공동 연구를 통해 피부 상태에 영향을 받지 않는 고품질의 전기 생리 신호 측정이 가능한 신축·접착성 마이크로니들 센서를 개발하는 데 성공했다고 23일 밝혔다.
다양한 재활치료에 활용되는 웨어러블 로봇이 사람의 움직임 의도를 인식하기 위해서는 몸에서 발생하는 근전도를 정확하게 측정하는 웨어러블 전기 생리 센서가 필요하다. 하지만 기존의 센서들은 시간에 따라 신호의 품질이 떨어지거나, 피부의 털, 각질, 땀 등의 영향을 많이 받고, 나아가 피부보다 단단한 물성으로 움직임 시 피부 변형을 따라갈 수 없어 노이즈(신호 잡음)를 발생시킬 수 있다. 이러한 단점들은 장시간의 신뢰성 높은 웨어러블 로봇 제어를 힘들게 한다.
이번에 개발된 기술은 잘 늘어나며 접착성이 있는 전도성 기판에 피부 각질층을 통과할 수 있는 마이크로니들 어레이를 집적해 불편함 없이 장기간 고품질의 근전도 측정을 가능하게 할 것으로 예상된다. 이와 같은 우수한 성능을 통해 땀, 각질 등을 제거하는 피부 준비 작업을 거치지 않아도 시간에 따른 착용자의 피부 상태 변화에 상관없이 웨어러블 로봇을 안정적으로 제어할 수 있을 것이라 기대된다.
연구팀은 부드러운 실리콘 중합체 기판을 활용해서 마이크로니들을 집적해 신축·접착성 마이크로니들 센서를 제작했다. 단단한 마이크로니들이 높은 저항을 가진 피부의 각질층을 투과해 피부 접촉 저항을 효과적으로 낮춰 털, 각질, 땀, 이물질로 피부가 오염돼도 고품질의 전기 생리 신호를 얻을 수 있다. 동시에 부드러운 전도성 접착 기판이 사람의 움직임으로 인한 피부의 늘어남에 순응해 편안한 착용감을 제공하고 움직임으로 인한 동작 잡음을 최소화할 수 있다.
연구팀은 개발된 신축·접착성 마이크로니들 센서 패치의 효용성을 검증하기 위해 웨어러블 로봇을 이용한 동작 보조 실험을 진행했다. 다리에 부착된 신축·접착성 마이크로니들 센서 패치는 근육에서 발생하는 전기신호를 감지하고 동작 의도를 웨어러블 로봇에 전송해 사람이 무거운 짐을 손쉽게 들어올릴 수 있도록 도와준다.
마이크로니들 센서 패치를 사용했을 때 피부 상태, 신체 움직임의 크기 및 종류와 상관없이 안정적인 근전도 센싱에 기반한 동작 의도 인식을 통해 웨어러블 로봇이 사용자의 동작을 효과적으로 보조할 수 있음을 연구팀은 확인했다.
이번 연구를 주도한 정재웅 교수는 “개발된 신축·접착성 마이크로니들 센서는 피부 상태에 영향받지 않는 안정적인 근전도 센싱을 통해 더욱 정확하고 안정적인 웨어러블 로봇 제어를 가능하게 하여 로봇을 활용하는 환자의 재활을 더 용이하게 할 수 있을 것이다”라고 말했다.
전기및전자공학부 김희수 박사과정과 이주현 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 1월 17일 字에 게재됐다.
(논문명 : Skin-preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control)
한편 이번 연구는 한국연구재단이 추진하는 생체신호센서융합기술개발사업, 전자약기술개발사업, 4단계 BK21 사업의 지원을 받아 수행됐다.
2024.01.23
조회수 5216
-
34배의 큰 힘을 내는 인공근육 소자 개발
우리 일상에 스며든 소프트 로봇, 의료기기, 웨어러블 장치 등에 적용시킬때 초저전력으로 구동되며 무게 대비 34배의 큰 힘을 내는 이온성 고분자 인공근육을 이용한 유체 스위치가 개발됐다. 유체 스위치는 유체 흐름을 제어함으로써 특정 방향으로 유체가 흐르게 하여 다양한 움직임을 유발하도록 한다.
우리 대학 기계공학과 오일권 교수 연구팀이 초저전력에서 작동하며 협소한 공간에서 사용할 수 있는 소프트 유체 스위치를 개발했다고 4일 밝혔다.
인공근육은 인간의 근육을 모방한 것으로 전통적인 모터에 비해 유연하고 자연스러운 움직임을 제공해 소프트 로봇이나 의료기기, 웨어러블 장치 등에 사용되는 기본 소자 중 하나이다. 이러한 인공근육은 전기, 공기 압력, 온도 변화와 같은 외부 자극에 반응하여 움직임을 만들어 내는데, 인공근육을 활용하기 위해서는 이 움직임을 얼마나 정교하게 제어하는지가 중요하다.
또한 기존 모터를 기반으로 한 스위치는 딱딱하고 큰 부피로 인해 제한된 공간 내에서 사용하는데 어려웠다. 이에, 연구팀은 좁은 관 속에서도 큰 힘을 내며 유체 흐름을 제어할 수 있는 이온성 고분자 인공근육을 개발하여 이를 소프트 유체 스위치로써 활용했다.
연구팀이 개발한 이온성 고분자 인공근육은 금속 전극과 이온성 고분자로 구성되어 있으며, 전기에 반응하여 힘과 움직임을 발생시킨다. 초저전력(~0.01V)에서 구동하면서 무게 대비 큰 힘을 낼 수 있도록 인공근육 전극의 표면에 유기 분자가 결합하여 만든 다공성의 공유결합성 유기 골격구조체 (pS-COF)를 활용했다.
그 결과, 머리카락 정도의 얇은 180 마이크로미터의 두께로 제작된 인공근육은 가벼운 무게 (10mg) 대비 34배 이상의 큰 힘을 내며 부드러운 움직임을 보였고, 이를 통해 연구팀은 낮은 전력으로 유체 흐름 방향을 정교하게 제어하는데 성공했다.
이번 연구를 주도한 오일권 교수는 “초저전력으로 작동하는 전기화학적 연성 유체 스위치는 유체 제어를 기반으로 하는 소프트 로봇, 소프트 일렉트로닉스, 미세유체공학 분야에서 많은 가능성을 열어줄 수 있다”며, “스마트 섬유에서 생체 의료 기기에 이르기까지, 이 기술은 우리 일상에서 초소형 전자 시스템에 쉽게 적용함으로써 다양한 산업현장에서 즉시 활용할 수 있는 잠재력을 지니고 있다”고 말했다.
기계공학과 연구 교수인 만마싸 마하토 박사가 제1 저자로 참여한 이번 연구 결과는 2023년 12월 13일에 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 게재됐다. (논문명: Polysulfonated Covalent Organic Framework as Active Electrode Host for Mobile Cation Guests in Electrochemical Soft Actuator)
이번 연구는 한국연구재단의 리더과학자지원사업(창의연구단)과 미래융합파이어니어 사업을 지원받아 수행됐다.
2024.01.04
조회수 9962
-
햇빛만으로 결빙 방지되는 필름 개발
열선, 스프레이 및 오일 주기적 도포, 기판 디자인 변경 등 없이도 금나노입자의 광열 효과를 산업현장에 적용할 수 있는 방빙/제빙 필름 코팅 기술이 개발되었다.
우리 대학 기계공학과 김형수 교수 연구팀(유체 및 계면 연구실)과 화학과 윤동기 교수 연구팀(연성 물질 나노조립 연구실)의 공동융합연구를 통해 단순 증발만으로 금 나노막대 입자를 사분면으로 균일하게 패터닝 할 수 있는 원천 기술을 확보하고, 이를 이용해 결빙 방지 및 제빙 표면을 개발했다고 3일 밝혔다.
최근 다양한 코팅 기법을 이용해 목표물 표면의 성질을 제어하려는 연구가 많이 진행되고 있으며, 특히, 기능성 나노 재료 패터닝을 통한 방식이 큰 주목을 받고 있다. 이 중에서도 금 나노 막대(GNR)는 생체 적합성, 화학적 안정성, 비교적 쉬운 합성, 표면 플라즈몬 공명이라는 안정적이면서도 독특한 특성으로 인해 유망한 나노물질 중 하나로 여겨지고 있다. 이때, 금 나노 막대의 성능을 극대화하려면 높은 수준의 증착 필름의 균일도와 금 나노 막대의 정렬도를 획득하는 것이 매우 중요하며, 현재 이를 구현하는 것은 여전히 해결해야 할 큰 문제다.
이를 해결하고자, 공동연구팀은 자연계에서 쉽게 추출이 가능한 차세대 기능성 나노 물질인 셀룰로오스 나노크리스탈(CNC)를 활용했다. 셀룰로오스 나노크리스탈 사분면 템플릿에 금 나노 막대를 공동 자가 조립해 균일하게 건조되면서 코팅 전체 면적에 환형으로 균일하게 정렬된 금 나노막대 필름을 개발하는 데 성공했다. 이번 연구에서 획득한 높은 균일도와 정렬도를 갖는 금 나노막대 필름은 기존 커피링 필름과 비교해 향상된 플라즈모닉 광학/광열 성능을 보였으며, 이는 가시광선 파장 영역대의 빛 조사만으로 방빙/제빙 역할을 해낼 수 있음을 연구팀은 실험적으로 증명했다.
기계공학과 김형수 교수는 “이 기술은 플라스틱 및 유연 표면 위에도 제작이 가능해 이를 외장재 및 필름에 활용하면 자체적으로 열에너지를 발생시킬 수 있어, 겨울철에 큰 문제가 되는 자동차 성에, 항공기 제빙, 주거/상용 공간의 유리창 등 다양한 분야에서 자발적 열에너지 하베스팅 효과를 통해 에너지 절약 효과를 가져다 줄 수 있을 것으로 기대한다”고 언급했다. 한편 화학과 윤동기 교수는 “필름화하기 힘들었던 나노셀룰로오스-금입자 복합체를 대면적에서 자유롭게 패터닝해 결빙 소재로 사용할 수 있고, 금의 플라즈모닉 성질을 이용한다면 마치 유리를 장식하는 스테인드 글래스처럼 사용할 수 있다는 점에서 의미가 있다”고 언급했다.
해당 연구 결과는 기계공학과 편정수 박사과정, 박순모 박사(KAIST졸업, 現 코넬 대학교 박사 후 연구원)가 공동 제1 저자로 참여했으며, 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2023년 12월 8일 字 온라인판에 게재됐다. (논문명 : Plasmonic Metasurfaces of Cellulose Nanocrystal Matrices with Quadrants of Aligned Gold Nanorods for Photothermal Anti-Icing, https://doi.org/10.1038/s41467-023-43511-9) 그리고, 연구의 우수성을 인정받아 국제 저널‘재료과학과 화학(Materials Science and Chemistry)’ 과 ‘무기 물리화학(Inorganic and Physical Chemistry)’ 두 편집자 하이라이트(Editors’ Highlights) 페이지에 선정됐다.
이번 연구는 한국연구재단의 개인기초 중견 연구(MIST: 2021R1A2C2007835)와 멀티스케일 카이랄 구조체 연구센터 (MSIT: 2018R1A5A1025208) 지원을 받아 수행됐다.
2024.01.03
조회수 11754
-
이산화탄소 분해 과정 원자 수준에서 관찰하다
대기 중의 온실가스를 제거하고 미래 청정 원료를 생산하기 위해 신재생에너지를 활용한 전기화학적 전환 기술은 탄소중립 달성을 위한 산업계 체제 전환 대응 핵심 기술로 주목받고 있다. 하지만, 이산화탄소를 산업적으로 분해/활용하기 위해서 최근 단원자 전이 금속 촉매가 이산화탄소를 분해하는 차세대 촉매로 큰 기대를 모으고 있으나 아직 이 화학반응 메커니즘 및 촉매 활성 부위가 명확히 밝혀지지 않아 고성능 촉매를 개발하는데 여전한 큰 걸림돌이 돼 왔다.
우리 대학 화학과 박정영 교수 연구팀이 이산화탄소(CO2) 전기환원 과정에서 단원자 구리(Cu) 금속 촉매가 분해되는 과정을 실시간 원자단위로 관찰하고, 주된 반응 활성자리임을 규명하는 데 성공했다고 28일 밝혔다.
전기화학 반응을 이용한 이산화탄소 전환 기술은 공정과 반응 조건이 비교적 간단하면서도 특히 구리 기반 촉매를 사용하면 열역학적 방법으로는 불가능한 고부가가치 화합물을 생산할 수 있어 연구활용 가치 기대가 매우 높다. 하지만, 이산화탄소의 환원반응은 일산화탄소(CO), 메탄(CH4), 에탄올(C2H5OH), 수소(H2) 등의 다양한 생성물들을 함께 만들어 낼 뿐만 아니라 촉매 표면 구조의 변화를 일으킨다는 문제점이 함께 한다. 따라서, 이를 해결하기 위해 전극 표면에서 일어나는 이산화탄소의 환원반응 경로 규명 및 표면 구조 거동 분석이 매우 중요해지고 있으나 액체 전해질 환경에서 반응이 이루어지는 탓에 분석에 어려움을 겪고 있다.
박 교수 연구팀은 전기화학 주사 터널링 현미경(EC-STM) 분석법을 적용해 단원자 구리금속 촉매 표면에서 일어나는 이산화탄소 환원반응을 관찰하고, 이때 표면에 형성되는 산화구리 나노 복합체가 주된 반응 활성자리임을 시각적 증거로 처음 제시했다. 연구진은 구리 전극 표면이 이산화탄소 전환과정에서 환원되며 반응 활성도 및 촉매 표면 구조가 달라진다는 점에 착안, 액체-고체 계면에서 단원자 구리금속 촉매 전극과 반응하는 이산화탄소 분자의 분해 과정을 실시간 원자단위로 포착했다.
우리 대학 박정영 교수는 “이번 연구는 액체-고체 계면 분석에 난항을 겪고 있는 상황에서 단원자 구리금속 기반 촉매 표면의 이산화탄소 전기환원 반응 현상을 원자수준으로 관찰할 수 있었고, 이를 통해 촉매 물질의 활성자리를 결정하고 정밀한 화학반응 경로 설계가 가능하다. 이러한 기술성과는 차후에 이산화탄소의 전기화학적 전환 연구 외에도 탄소중립 정책을 위한 다양한 촉매 소재 연구개발에 기여할 것으로 기대한다”고 말했다.
한편, 기초과학연구원, 한국과학기술연구원(KIST), 한국산업통상자원부 그리고 한국연구재단(NRF)의 지원을 받은 이번 연구성과는 국제학술지 ‘어드밴스드 사이언스(Advanced Science IF 17.5)’내부 표지 논문으로 최근 선정됐으며 11월 29일 자로 온라인 게재됐다. (논문 제목: In Situ Probing of CO2 Reduction on Cu-Phthalocyanine-Derived CuxO Complex)
2023.12.28
조회수 4812
-
극한 호우는 지구온난화 때문이었다
과거 60여 년간 동아시아지역에 호우 강도가 약 17% 증가했고 주된 원인이 인간 활동에 의한 지구온난화의 가속화임을 세계 최초로 입증하는 데 성공했다.
우리 대학 문술미래전략대학원(건설및환경공학과, 녹색성장및지속가능대학원 겸임) 김형준 교수와 인문사회연구소 문수연 박사가 한·미·일 국제 공동 연구를 통해 과거 60여 년간 관측된 동아시아 지역의 기상 전선에 의한 호우 강도의 증가가 인간 활동에 의한 기후변화의 영향이었음을 지구 메타버스 기술을 이용해 처음으로 증명했다고 5일 밝혔다.
여름 호우는 농업 및 산업에 큰 영향을 미치며 홍수나 산사태 등의 재해를 일으켜 지역의 생태계에도 영향을 주는 등 인간 사회 있어서 커다란 위협 중 하나라고 할 수 있다. 여름 호우의 강도가 과거 몇십 년간 변화돼 온 사실은 세계 각지에서 보고됐다. 그러나 동아시아의 여름 호우는 태풍, 온대 저기압, 전선과 같은 다양한 프로세스에 기인하며, 여름 호우의 40% 이상을 차지하는 전선이 야기하는 호우에 관한 연구는 아직 미흡하다. 또한, 호우는 기후 시스템의 자연 변동 혹은 우연성에 의한 영향 또한 존재하기 때문에 인간 활동에 의한 온난화가 전선 유래의 호우 강도에 어느 정도 영향을 주고 있는지는 아직 밝혀지지 않고 있다.
KAIST, 동경대, 동경공업대, 전남대, GIST, 유타주립대 등 한·미·일 8개 기관으로 구성된 국제 공동연구팀은 동아시아의 기상 전선에 의한 호우 강도를 과거 약 60년간 관측 데이터로 확인한 결과 중국 남동부의 연안 영역부터 한반도 그리고 일본에 걸쳐 호우의 강도가 약 17% 증가한 사실을 발견했다. 연구팀은 이러한 변화의 원인을 밝히기 위해 인간 활동에 의한 온실가스의 배출이 있는 지구와 그렇지 않은 지구를 시뮬레이션한 지구 메타버스 실험을 이용해 온실가스 배출에 의해 호우 강도가 약 6% 강화됐으며, 발견된 변화가 인간 활동에 의한 온난화의 영향을 배제하고서는 설명할 수 없음을 보이는 데 세계 최초로 성공했다.
교신 저자인 김형준 교수는 "이번 연구는 동아시아에서 기상 전선에 의한 호우의 강도가 최근 반세기에 걸쳐 유의미하게 증가했음을 밝히고 그러한 변화에 이미 인류의 흔적이 뚜렷하게 남겨져 있음을 증명한다ˮ며, "이는 기후변화의 영향을 이해하는 데 중요한 단서가 되며 동시에 탄소중립을 성공적으로 달성하더라도 필연적으로 진행되는 가까운 미래의 기후변화에 대해 효율적으로 적응하기 위해 필수 불가결한 정보라고 할 수 있다ˮ고 말했다.
이번 연구 결과는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 11월 24일 출판됐다. (논문명: Anthropogenic warming induced intensification of summer monsoon frontal precipitation over East Asia)
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)와 인류세연구센터의 지원을 받아 수행됐다.
2023.12.05
조회수 4907